$L^p$-decay of solutions to dissipative-dispersive perturbations of conservation laws
Annales Polonici Mathematici, Tome 67 (1997) no. 1, pp. 65-86
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We study the decay in time of the spatial $L^p$-norm (1 ≤ p ≤ ∞) of solutions to parabolic conservation laws with dispersive and dissipative terms added uₜ - uₓₓₜ - νuₓₓ + buₓ = f(u)ₓ or uₜ + uₓₓₓ - νuₓₓ + buₓ = f(u)ₓ, and we show that under general assumptions about the nonlinearity, solutions of the nonlinear equations have the same long time behavior as their linearizations at the zero solution.
Keywords:
asymptotic behavior of solutions, dispersive equations, parabolic conservation laws, oscillatory integrals
Affiliations des auteurs :
Grzegorz Karch 1
@article{10_4064_ap_67_1_65_86,
author = {Grzegorz Karch},
title = {$L^p$-decay of solutions to dissipative-dispersive perturbations of conservation laws},
journal = {Annales Polonici Mathematici},
pages = {65--86},
year = {1997},
volume = {67},
number = {1},
doi = {10.4064/ap-67-1-65-86},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-67-1-65-86/}
}
TY - JOUR AU - Grzegorz Karch TI - $L^p$-decay of solutions to dissipative-dispersive perturbations of conservation laws JO - Annales Polonici Mathematici PY - 1997 SP - 65 EP - 86 VL - 67 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-67-1-65-86/ DO - 10.4064/ap-67-1-65-86 LA - en ID - 10_4064_ap_67_1_65_86 ER -
%0 Journal Article %A Grzegorz Karch %T $L^p$-decay of solutions to dissipative-dispersive perturbations of conservation laws %J Annales Polonici Mathematici %D 1997 %P 65-86 %V 67 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/ap-67-1-65-86/ %R 10.4064/ap-67-1-65-86 %G en %F 10_4064_ap_67_1_65_86
Grzegorz Karch. $L^p$-decay of solutions to dissipative-dispersive perturbations of conservation laws. Annales Polonici Mathematici, Tome 67 (1997) no. 1, pp. 65-86. doi: 10.4064/ap-67-1-65-86
Cité par Sources :