Nontrivial critical points of asymptotically quadratic functions at resonances
Annales Polonici Mathematici, Tome 67 (1997) no. 1, pp. 43-57
Asymptotically quadratic functions defined on Hilbert spaces are studied by using some results of the theory of Morse-Conley index. Applications are given to existence of nontrivial weak solutions for asymptotically linear elliptic partial and ordinary differential equations at resonances.
@article{10_4064_ap_67_1_43_57,
author = {Michal Fe\v{c}kan},
title = {Nontrivial critical points of asymptotically quadratic functions at resonances},
journal = {Annales Polonici Mathematici},
pages = {43--57},
year = {1997},
volume = {67},
number = {1},
doi = {10.4064/ap-67-1-43-57},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-67-1-43-57/}
}
TY - JOUR AU - Michal Fečkan TI - Nontrivial critical points of asymptotically quadratic functions at resonances JO - Annales Polonici Mathematici PY - 1997 SP - 43 EP - 57 VL - 67 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-67-1-43-57/ DO - 10.4064/ap-67-1-43-57 LA - en ID - 10_4064_ap_67_1_43_57 ER -
Michal Fečkan. Nontrivial critical points of asymptotically quadratic functions at resonances. Annales Polonici Mathematici, Tome 67 (1997) no. 1, pp. 43-57. doi: 10.4064/ap-67-1-43-57
Cité par Sources :