Borel resummation of formal solutions to nonlinear Laplace equations in 2 variables
Annales Polonici Mathematici, Tome 67 (1997) no. 1, pp. 31-41.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider a nonlinear Laplace equation Δu = f(x,u) in two variables. Following the methods of B. Braaksma [Br] and J. Ecalle used for some nonlinear ordinary differential equations we construct first a formal power series solution and then we prove the convergence of the series in the same class as the function f in x.
DOI : 10.4064/ap-67-1-31-41
Keywords: Borel resummation, formal solutions, Laplace equation

M. Pliś 1 ; B. Ziemian 1

1
@article{10_4064_ap_67_1_31_41,
     author = {M. Pli\'s and B. Ziemian},
     title = {Borel resummation of formal solutions to nonlinear {Laplace} equations in 2 variables},
     journal = {Annales Polonici Mathematici},
     pages = {31--41},
     publisher = {mathdoc},
     volume = {67},
     number = {1},
     year = {1997},
     doi = {10.4064/ap-67-1-31-41},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-67-1-31-41/}
}
TY  - JOUR
AU  - M. Pliś
AU  - B. Ziemian
TI  - Borel resummation of formal solutions to nonlinear Laplace equations in 2 variables
JO  - Annales Polonici Mathematici
PY  - 1997
SP  - 31
EP  - 41
VL  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-67-1-31-41/
DO  - 10.4064/ap-67-1-31-41
LA  - en
ID  - 10_4064_ap_67_1_31_41
ER  - 
%0 Journal Article
%A M. Pliś
%A B. Ziemian
%T Borel resummation of formal solutions to nonlinear Laplace equations in 2 variables
%J Annales Polonici Mathematici
%D 1997
%P 31-41
%V 67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-67-1-31-41/
%R 10.4064/ap-67-1-31-41
%G en
%F 10_4064_ap_67_1_31_41
M. Pliś; B. Ziemian. Borel resummation of formal solutions to nonlinear Laplace equations in 2 variables. Annales Polonici Mathematici, Tome 67 (1997) no. 1, pp. 31-41. doi : 10.4064/ap-67-1-31-41. http://geodesic.mathdoc.fr/articles/10.4064/ap-67-1-31-41/

Cité par Sources :