Riemann problem on the double of a multiply connected circular region
Annales Polonici Mathematici, Tome 67 (1997) no. 1, pp. 1-14
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The Riemann problem has been solved in [9] for an arbitrary closed Riemann surface in terms of the principal functionals. This paper is devoted to solution of the problem only for the double of a multiply connected region and can be treated as complementary to [9,1]. We obtain a complete solution of the Riemann problem in that particular case. The solution is given in analytic form by a Poincaré series.
Keywords:
boundary value problems on Riemann surfaces, functional equation
Affiliations des auteurs :
V. Mityushev 1
@article{10_4064_ap_67_1_1_14,
author = {V. Mityushev},
title = {Riemann problem on the double of a multiply connected circular region},
journal = {Annales Polonici Mathematici},
pages = {1--14},
publisher = {mathdoc},
volume = {67},
number = {1},
year = {1997},
doi = {10.4064/ap-67-1-1-14},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-67-1-1-14/}
}
TY - JOUR AU - V. Mityushev TI - Riemann problem on the double of a multiply connected circular region JO - Annales Polonici Mathematici PY - 1997 SP - 1 EP - 14 VL - 67 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-67-1-1-14/ DO - 10.4064/ap-67-1-1-14 LA - en ID - 10_4064_ap_67_1_1_14 ER -
V. Mityushev. Riemann problem on the double of a multiply connected circular region. Annales Polonici Mathematici, Tome 67 (1997) no. 1, pp. 1-14. doi: 10.4064/ap-67-1-1-14
Cité par Sources :