Classifications and existence of nonoscillatory solutions of second order nonlinear neutral differential equations
Annales Polonici Mathematici, Tome 65 (1996) no. 3, pp. 283-302
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A class of neutral nonlinear differential equations is studied. Various classifications of their eventually positive solutions are given. Necessary and/or sufficient conditions are then derived for the existence of these eventually positive solutions. The derivations are based on two fixed point theorems as well as the method of successive approximations.
Keywords:
oscillation, neutral nonlinear differential equation, asymptotic behavior
Affiliations des auteurs :
Wantong Li 1
@article{10_4064_ap_65_3_283_302,
author = {Wantong Li},
title = {Classifications and existence of nonoscillatory solutions of second order nonlinear neutral differential equations},
journal = {Annales Polonici Mathematici},
pages = {283--302},
publisher = {mathdoc},
volume = {65},
number = {3},
year = {1996},
doi = {10.4064/ap-65-3-283-302},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-65-3-283-302/}
}
TY - JOUR AU - Wantong Li TI - Classifications and existence of nonoscillatory solutions of second order nonlinear neutral differential equations JO - Annales Polonici Mathematici PY - 1996 SP - 283 EP - 302 VL - 65 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-65-3-283-302/ DO - 10.4064/ap-65-3-283-302 LA - en ID - 10_4064_ap_65_3_283_302 ER -
%0 Journal Article %A Wantong Li %T Classifications and existence of nonoscillatory solutions of second order nonlinear neutral differential equations %J Annales Polonici Mathematici %D 1996 %P 283-302 %V 65 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap-65-3-283-302/ %R 10.4064/ap-65-3-283-302 %G en %F 10_4064_ap_65_3_283_302
Wantong Li. Classifications and existence of nonoscillatory solutions of second order nonlinear neutral differential equations. Annales Polonici Mathematici, Tome 65 (1996) no. 3, pp. 283-302. doi: 10.4064/ap-65-3-283-302
Cité par Sources :