A generalized periodic boundary value problem for the one-dimensional p-Laplacian
Annales Polonici Mathematici, Tome 65 (1996) no. 3, pp. 265-270
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The generalized periodic boundary value problem -[g(u')]' = f(t,u,u'), a t b, with u(a) = ξu(b) + c and u'(b) = ηu'(a) is studied by using the generalized method of upper and lower solutions, where ξ,η ≥ 0, a, b, c are given real numbers, $g(s) = |s|^{p-2} s$, p > 1, and f is a Carathéodory function satisfying a Nagumo condition. The problem has a solution if and only if there exists a lower solution α and an upper solution β with α(t) ≤ β(t) for a ≤ t ≤ b.
Keywords:
generalized periodic boundary value problem, p-Laplacian, upper and lower solutions, Carathéodory function, Nagumo condition
Affiliations des auteurs :
Daqing Jiang 1 ; Junyu Wang 1
@article{10_4064_ap_65_3_265_270,
author = {Daqing Jiang and Junyu Wang},
title = {A generalized periodic boundary value problem for the one-dimensional {p-Laplacian}},
journal = {Annales Polonici Mathematici},
pages = {265--270},
publisher = {mathdoc},
volume = {65},
number = {3},
year = {1996},
doi = {10.4064/ap-65-3-265-270},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-65-3-265-270/}
}
TY - JOUR AU - Daqing Jiang AU - Junyu Wang TI - A generalized periodic boundary value problem for the one-dimensional p-Laplacian JO - Annales Polonici Mathematici PY - 1996 SP - 265 EP - 270 VL - 65 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-65-3-265-270/ DO - 10.4064/ap-65-3-265-270 LA - en ID - 10_4064_ap_65_3_265_270 ER -
%0 Journal Article %A Daqing Jiang %A Junyu Wang %T A generalized periodic boundary value problem for the one-dimensional p-Laplacian %J Annales Polonici Mathematici %D 1996 %P 265-270 %V 65 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap-65-3-265-270/ %R 10.4064/ap-65-3-265-270 %G en %F 10_4064_ap_65_3_265_270
Daqing Jiang; Junyu Wang. A generalized periodic boundary value problem for the one-dimensional p-Laplacian. Annales Polonici Mathematici, Tome 65 (1996) no. 3, pp. 265-270. doi: 10.4064/ap-65-3-265-270
Cité par Sources :