Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Klaudiusz Wójcik 1
@article{10_4064_ap_65_3_203_211, author = {Klaudiusz W\'ojcik}, title = {An attraction result and an index theorem for continuous flows on $\ensuremath{\mathbb{R}}^n {\texttimes} [0,\ensuremath{\infty})$}, journal = {Annales Polonici Mathematici}, pages = {203--211}, publisher = {mathdoc}, volume = {65}, number = {3}, year = {1996}, doi = {10.4064/ap-65-3-203-211}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-65-3-203-211/} }
TY - JOUR AU - Klaudiusz Wójcik TI - An attraction result and an index theorem for continuous flows on $ℝ^n × [0,∞)$ JO - Annales Polonici Mathematici PY - 1996 SP - 203 EP - 211 VL - 65 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-65-3-203-211/ DO - 10.4064/ap-65-3-203-211 LA - en ID - 10_4064_ap_65_3_203_211 ER -
%0 Journal Article %A Klaudiusz Wójcik %T An attraction result and an index theorem for continuous flows on $ℝ^n × [0,∞)$ %J Annales Polonici Mathematici %D 1996 %P 203-211 %V 65 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap-65-3-203-211/ %R 10.4064/ap-65-3-203-211 %G en %F 10_4064_ap_65_3_203_211
Klaudiusz Wójcik. An attraction result and an index theorem for continuous flows on $ℝ^n × [0,∞)$. Annales Polonici Mathematici, Tome 65 (1996) no. 3, pp. 203-211. doi : 10.4064/ap-65-3-203-211. http://geodesic.mathdoc.fr/articles/10.4064/ap-65-3-203-211/
Cité par Sources :