An attraction result and an index theorem for continuous flows on $ℝ^n × [0,∞)$
Annales Polonici Mathematici, Tome 65 (1996) no. 3, pp. 203-211.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the behavior of a continuous flow near a boundary. We prove that if φ is a flow on $E = ℝ^{n+1}$ for which $∂E = ℝ^n × {0}$ is an invariant set and S ⊂ ∂E is an isolated invariant set, with non-zero homological Conley index, then there exists an x in E\∂E such that either α(x) or ω(x) is in S. We also prove an index theorem for a flow on $ℝ^n × [0,∞)$.
DOI : 10.4064/ap-65-3-203-211
Keywords: Conley index, fixed point index, permanence

Klaudiusz Wójcik 1

1
@article{10_4064_ap_65_3_203_211,
     author = {Klaudiusz W\'ojcik},
     title = {An attraction result and an index theorem for continuous flows on $\ensuremath{\mathbb{R}}^n {\texttimes} [0,\ensuremath{\infty})$},
     journal = {Annales Polonici Mathematici},
     pages = {203--211},
     publisher = {mathdoc},
     volume = {65},
     number = {3},
     year = {1996},
     doi = {10.4064/ap-65-3-203-211},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-65-3-203-211/}
}
TY  - JOUR
AU  - Klaudiusz Wójcik
TI  - An attraction result and an index theorem for continuous flows on $ℝ^n × [0,∞)$
JO  - Annales Polonici Mathematici
PY  - 1996
SP  - 203
EP  - 211
VL  - 65
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-65-3-203-211/
DO  - 10.4064/ap-65-3-203-211
LA  - en
ID  - 10_4064_ap_65_3_203_211
ER  - 
%0 Journal Article
%A Klaudiusz Wójcik
%T An attraction result and an index theorem for continuous flows on $ℝ^n × [0,∞)$
%J Annales Polonici Mathematici
%D 1996
%P 203-211
%V 65
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-65-3-203-211/
%R 10.4064/ap-65-3-203-211
%G en
%F 10_4064_ap_65_3_203_211
Klaudiusz Wójcik. An attraction result and an index theorem for continuous flows on $ℝ^n × [0,∞)$. Annales Polonici Mathematici, Tome 65 (1996) no. 3, pp. 203-211. doi : 10.4064/ap-65-3-203-211. http://geodesic.mathdoc.fr/articles/10.4064/ap-65-3-203-211/

Cité par Sources :