An attraction result and an index theorem for continuous flows on $ℝ^n × [0,∞)$
Annales Polonici Mathematici, Tome 65 (1996) no. 3, pp. 203-211
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study the behavior of a continuous flow near a boundary. We prove that if φ is a flow on $E = ℝ^{n+1}$ for which $∂E = ℝ^n × {0}$ is an invariant set and S ⊂ ∂E is an isolated invariant set, with non-zero homological Conley index, then there exists an x in E\∂E such that either α(x) or ω(x) is in S. We also prove an index theorem for a flow on $ℝ^n × [0,∞)$.
Keywords:
Conley index, fixed point index, permanence
Affiliations des auteurs :
Klaudiusz Wójcik 1
@article{10_4064_ap_65_3_203_211,
author = {Klaudiusz W\'ojcik},
title = {An attraction result and an index theorem for continuous flows on $\ensuremath{\mathbb{R}}^n {\texttimes} [0,\ensuremath{\infty})$},
journal = {Annales Polonici Mathematici},
pages = {203--211},
publisher = {mathdoc},
volume = {65},
number = {3},
year = {1996},
doi = {10.4064/ap-65-3-203-211},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-65-3-203-211/}
}
TY - JOUR AU - Klaudiusz Wójcik TI - An attraction result and an index theorem for continuous flows on $ℝ^n × [0,∞)$ JO - Annales Polonici Mathematici PY - 1996 SP - 203 EP - 211 VL - 65 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-65-3-203-211/ DO - 10.4064/ap-65-3-203-211 LA - en ID - 10_4064_ap_65_3_203_211 ER -
%0 Journal Article %A Klaudiusz Wójcik %T An attraction result and an index theorem for continuous flows on $ℝ^n × [0,∞)$ %J Annales Polonici Mathematici %D 1996 %P 203-211 %V 65 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap-65-3-203-211/ %R 10.4064/ap-65-3-203-211 %G en %F 10_4064_ap_65_3_203_211
Klaudiusz Wójcik. An attraction result and an index theorem for continuous flows on $ℝ^n × [0,∞)$. Annales Polonici Mathematici, Tome 65 (1996) no. 3, pp. 203-211. doi: 10.4064/ap-65-3-203-211
Cité par Sources :