Certain partial differential subordinations on some Reinhardt domains in $ℂ^n$
Annales Polonici Mathematici, Tome 65 (1996) no. 2, pp. 179-191.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We obtain an extension of Jack-Miller-Mocanu's Lemma for holomorphic mappings defined in some Reinhardt domains in $ℂ^n$. Using this result we consider first and second order partial differential subordinations for holomorphic mappings defined on the Reinhardt domain $B_{2p}$ with p ≥ 1.
DOI : 10.4064/ap-65-2-179-191
Keywords: subordination, biholomorphic mapping, Reinhardt domain

Gabriela Kohr 1 ; Mirela Kohr 1

1
@article{10_4064_ap_65_2_179_191,
     author = {Gabriela Kohr and Mirela Kohr},
     title = {Certain partial differential subordinations on some {Reinhardt} domains in $\ensuremath{\mathbb{C}}^n$},
     journal = {Annales Polonici Mathematici},
     pages = {179--191},
     publisher = {mathdoc},
     volume = {65},
     number = {2},
     year = {1996},
     doi = {10.4064/ap-65-2-179-191},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-65-2-179-191/}
}
TY  - JOUR
AU  - Gabriela Kohr
AU  - Mirela Kohr
TI  - Certain partial differential subordinations on some Reinhardt domains in $ℂ^n$
JO  - Annales Polonici Mathematici
PY  - 1996
SP  - 179
EP  - 191
VL  - 65
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-65-2-179-191/
DO  - 10.4064/ap-65-2-179-191
LA  - en
ID  - 10_4064_ap_65_2_179_191
ER  - 
%0 Journal Article
%A Gabriela Kohr
%A Mirela Kohr
%T Certain partial differential subordinations on some Reinhardt domains in $ℂ^n$
%J Annales Polonici Mathematici
%D 1996
%P 179-191
%V 65
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-65-2-179-191/
%R 10.4064/ap-65-2-179-191
%G en
%F 10_4064_ap_65_2_179_191
Gabriela Kohr; Mirela Kohr. Certain partial differential subordinations on some Reinhardt domains in $ℂ^n$. Annales Polonici Mathematici, Tome 65 (1996) no. 2, pp. 179-191. doi : 10.4064/ap-65-2-179-191. http://geodesic.mathdoc.fr/articles/10.4064/ap-65-2-179-191/

Cité par Sources :