On weak solutions of functional-differential abstract nonlocal Cauchy problems
Annales Polonici Mathematici, Tome 65 (1996) no. 2, pp. 163-170.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The existence, uniqueness and asymptotic stability of weak solutions of functional-differential abstract nonlocal Cauchy problems in a Banach space are studied. Methods of m-accretive operators and the Banach contraction theorem are applied.
DOI : 10.4064/ap-65-2-163-170
Keywords: abstract Cauchy problems, functional-differential equation, nonlocal conditions, weak solutions, existence, uniqueness, asympto tic stability, m-accretive operators, Banach contraction theorem

Ludwik Byszewski 1

1
@article{10_4064_ap_65_2_163_170,
     author = {Ludwik Byszewski},
     title = {On weak solutions of functional-differential abstract nonlocal {Cauchy} problems},
     journal = {Annales Polonici Mathematici},
     pages = {163--170},
     publisher = {mathdoc},
     volume = {65},
     number = {2},
     year = {1996},
     doi = {10.4064/ap-65-2-163-170},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-65-2-163-170/}
}
TY  - JOUR
AU  - Ludwik Byszewski
TI  - On weak solutions of functional-differential abstract nonlocal Cauchy problems
JO  - Annales Polonici Mathematici
PY  - 1996
SP  - 163
EP  - 170
VL  - 65
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-65-2-163-170/
DO  - 10.4064/ap-65-2-163-170
LA  - en
ID  - 10_4064_ap_65_2_163_170
ER  - 
%0 Journal Article
%A Ludwik Byszewski
%T On weak solutions of functional-differential abstract nonlocal Cauchy problems
%J Annales Polonici Mathematici
%D 1996
%P 163-170
%V 65
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-65-2-163-170/
%R 10.4064/ap-65-2-163-170
%G en
%F 10_4064_ap_65_2_163_170
Ludwik Byszewski. On weak solutions of functional-differential abstract nonlocal Cauchy problems. Annales Polonici Mathematici, Tome 65 (1996) no. 2, pp. 163-170. doi : 10.4064/ap-65-2-163-170. http://geodesic.mathdoc.fr/articles/10.4064/ap-65-2-163-170/

Cité par Sources :