Properties of some integrals related to partial differential equations of order higher than two
Annales Polonici Mathematici, Tome 65 (1996) no. 2, pp. 129-138.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We construct fundamental solutions of some partial differential equations of order higher than two and examine properties of these solutions and of some related integrals. The results will be used in our next paper concerning boundary-value problems for these equations.
DOI : 10.4064/ap-65-2-129-138
Keywords: partial differential equation, boundary-value problem, Volterra integral equation

Jan Popiołek 1

1
@article{10_4064_ap_65_2_129_138,
     author = {Jan Popio{\l}ek},
     title = {Properties of some integrals related to partial differential equations of order higher than two},
     journal = {Annales Polonici Mathematici},
     pages = {129--138},
     publisher = {mathdoc},
     volume = {65},
     number = {2},
     year = {1996},
     doi = {10.4064/ap-65-2-129-138},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-65-2-129-138/}
}
TY  - JOUR
AU  - Jan Popiołek
TI  - Properties of some integrals related to partial differential equations of order higher than two
JO  - Annales Polonici Mathematici
PY  - 1996
SP  - 129
EP  - 138
VL  - 65
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-65-2-129-138/
DO  - 10.4064/ap-65-2-129-138
LA  - en
ID  - 10_4064_ap_65_2_129_138
ER  - 
%0 Journal Article
%A Jan Popiołek
%T Properties of some integrals related to partial differential equations of order higher than two
%J Annales Polonici Mathematici
%D 1996
%P 129-138
%V 65
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-65-2-129-138/
%R 10.4064/ap-65-2-129-138
%G en
%F 10_4064_ap_65_2_129_138
Jan Popiołek. Properties of some integrals related to partial differential equations of order higher than two. Annales Polonici Mathematici, Tome 65 (1996) no. 2, pp. 129-138. doi : 10.4064/ap-65-2-129-138. http://geodesic.mathdoc.fr/articles/10.4064/ap-65-2-129-138/

Cité par Sources :