On the univalent, bounded, non-vanishing and symmetric functions in the unit disk
Annales Polonici Mathematici, Tome 64 (1996) no. 3, pp. 291-299.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The paper is devoted to a class of functions analytic, univalent, bounded and non-vanishing in the unit disk and in addition, symmetric with respect to the real axis. Variational formulas are derived and, as applications, estimates are given of the first and second coefficients in the considered class of functions.
DOI : 10.4064/ap-64-3-291-299
Keywords: univalent function, variational method, Schiffer type equation

J. Śladkowska 1

1
@article{10_4064_ap_64_3_291_299,
     author = {J. \'Sladkowska},
     title = {On the univalent, bounded, non-vanishing and symmetric functions in the unit disk},
     journal = {Annales Polonici Mathematici},
     pages = {291--299},
     publisher = {mathdoc},
     volume = {64},
     number = {3},
     year = {1996},
     doi = {10.4064/ap-64-3-291-299},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-64-3-291-299/}
}
TY  - JOUR
AU  - J. Śladkowska
TI  - On the univalent, bounded, non-vanishing and symmetric functions in the unit disk
JO  - Annales Polonici Mathematici
PY  - 1996
SP  - 291
EP  - 299
VL  - 64
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-64-3-291-299/
DO  - 10.4064/ap-64-3-291-299
LA  - en
ID  - 10_4064_ap_64_3_291_299
ER  - 
%0 Journal Article
%A J. Śladkowska
%T On the univalent, bounded, non-vanishing and symmetric functions in the unit disk
%J Annales Polonici Mathematici
%D 1996
%P 291-299
%V 64
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-64-3-291-299/
%R 10.4064/ap-64-3-291-299
%G en
%F 10_4064_ap_64_3_291_299
J. Śladkowska. On the univalent, bounded, non-vanishing and symmetric functions in the unit disk. Annales Polonici Mathematici, Tome 64 (1996) no. 3, pp. 291-299. doi : 10.4064/ap-64-3-291-299. http://geodesic.mathdoc.fr/articles/10.4064/ap-64-3-291-299/

Cité par Sources :