Yagzhev polynomial mappings: on the structure of the Taylor expansion of their local inverse
Annales Polonici Mathematici, Tome 64 (1996) no. 3, pp. 285-290
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
It is well known that the Jacobian conjecture follows if it is proved for the special polynomial mappings $f:ℂ^n → ℂ^n$ of the Yagzhev type: f(x) = x - G(x,x,x), where G is a trilinear form and $det f'(x) ≡ 1. Drużkowski and Rusek [7] showed that if we take the local inverse of f at the origin and expand it into a Taylor series $∑_{k≥1}Φ_k$ of homogeneous terms $Φ_k$ of degree k, we find that $Φ_{2m+1}$ is a linear combination of certain m-fold "nested compositions" of G with itself. If the Jacobian Conjecture were true, $f^{-1}$ should be a polynomial mapping of degree $≤ 3^{n-1}$ and the terms $Φ_k$ ought to vanish identically for $k > 3^{n-1}$. We may wonder whether the reason why $Φ_{2m+1}$ vanishes is that each of the nested compositions is somehow zero for large m. In this note we show that this is not at all the case, using a polynomial mapping found by van den Essen for other purposes.
Affiliations des auteurs :
Gianluca Gorni 1 ; Gaetano Zampieri 1
@article{10_4064_ap_64_3_285_290,
author = {Gianluca Gorni and Gaetano Zampieri},
title = {Yagzhev polynomial mappings: on the structure of the {Taylor} expansion of their local inverse},
journal = {Annales Polonici Mathematici},
pages = {285--290},
publisher = {mathdoc},
volume = {64},
number = {3},
year = {1996},
doi = {10.4064/ap-64-3-285-290},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-64-3-285-290/}
}
TY - JOUR AU - Gianluca Gorni AU - Gaetano Zampieri TI - Yagzhev polynomial mappings: on the structure of the Taylor expansion of their local inverse JO - Annales Polonici Mathematici PY - 1996 SP - 285 EP - 290 VL - 64 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-64-3-285-290/ DO - 10.4064/ap-64-3-285-290 LA - en ID - 10_4064_ap_64_3_285_290 ER -
%0 Journal Article %A Gianluca Gorni %A Gaetano Zampieri %T Yagzhev polynomial mappings: on the structure of the Taylor expansion of their local inverse %J Annales Polonici Mathematici %D 1996 %P 285-290 %V 64 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap-64-3-285-290/ %R 10.4064/ap-64-3-285-290 %G en %F 10_4064_ap_64_3_285_290
Gianluca Gorni; Gaetano Zampieri. Yagzhev polynomial mappings: on the structure of the Taylor expansion of their local inverse. Annales Polonici Mathematici, Tome 64 (1996) no. 3, pp. 285-290. doi: 10.4064/ap-64-3-285-290
Cité par Sources :