Positive solutions to nonlinear singular second order boundary value problems
Annales Polonici Mathematici, Tome 64 (1996) no. 3, pp. 237-251
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Existence theorems of positive solutions to a class of singular second order boundary value problems of the form y'' + f(x,y,y') = 0, 0 x 1, are established. It is not required that the function (x,y,z) → f(x,y,z) be nonincreasing in y and/or z, as is generally assumed. However, when (x,y,z) → f(x,y,z) is nonincreasing in y and z, some of O'Regan's results [J. Differential Equations 84 (1990), 228-251] are improved. The proofs of the main theorems are based on a fixed point theorem for weakly sequentially continuous operators.
Keywords:
singular boundary value problem, positive solution
Affiliations des auteurs :
Gabriele Bonanno 1
@article{10_4064_ap_64_3_237_251,
author = {Gabriele Bonanno},
title = {Positive solutions to nonlinear singular second order boundary value problems},
journal = {Annales Polonici Mathematici},
pages = {237--251},
year = {1996},
volume = {64},
number = {3},
doi = {10.4064/ap-64-3-237-251},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-64-3-237-251/}
}
TY - JOUR AU - Gabriele Bonanno TI - Positive solutions to nonlinear singular second order boundary value problems JO - Annales Polonici Mathematici PY - 1996 SP - 237 EP - 251 VL - 64 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-64-3-237-251/ DO - 10.4064/ap-64-3-237-251 LA - en ID - 10_4064_ap_64_3_237_251 ER -
%0 Journal Article %A Gabriele Bonanno %T Positive solutions to nonlinear singular second order boundary value problems %J Annales Polonici Mathematici %D 1996 %P 237-251 %V 64 %N 3 %U http://geodesic.mathdoc.fr/articles/10.4064/ap-64-3-237-251/ %R 10.4064/ap-64-3-237-251 %G en %F 10_4064_ap_64_3_237_251
Gabriele Bonanno. Positive solutions to nonlinear singular second order boundary value problems. Annales Polonici Mathematici, Tome 64 (1996) no. 3, pp. 237-251. doi: 10.4064/ap-64-3-237-251
Cité par Sources :