On the increasing solutions of the translation equation
Annales Polonici Mathematici, Tome 64 (1996) no. 3, pp. 207-214
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let M be a non-empty set endowed with a dense linear order without the smallest and greatest elements. Let (G,+) be a group which has a non-trivial uniquely divisible subgroup. There are given conditions under which every solution F: M×G → M of the translation equation is of the form $F(a,x) = f^{-1}(f(a) + c(x))$ for a ∈ M, x ∈ G with some non-trivial additive function c: G → ℝ and a strictly increasing function f: M → ℝ such that f(M) + c(G) ⊂ f(M). In particular, a problem of J. Tabor is solved.
Keywords:
translation equation, linear order, increasing function, additive function
Affiliations des auteurs :
Janusz Brzdęk 1
@article{10_4064_ap_64_3_207_214,
author = {Janusz Brzd\k{e}k},
title = {On the increasing solutions of the translation equation},
journal = {Annales Polonici Mathematici},
pages = {207--214},
publisher = {mathdoc},
volume = {64},
number = {3},
year = {1996},
doi = {10.4064/ap-64-3-207-214},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-64-3-207-214/}
}
TY - JOUR AU - Janusz Brzdęk TI - On the increasing solutions of the translation equation JO - Annales Polonici Mathematici PY - 1996 SP - 207 EP - 214 VL - 64 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-64-3-207-214/ DO - 10.4064/ap-64-3-207-214 LA - en ID - 10_4064_ap_64_3_207_214 ER -
Janusz Brzdęk. On the increasing solutions of the translation equation. Annales Polonici Mathematici, Tome 64 (1996) no. 3, pp. 207-214. doi: 10.4064/ap-64-3-207-214
Cité par Sources :