On the increasing solutions of the translation equation
Annales Polonici Mathematici, Tome 64 (1996) no. 3, pp. 207-214.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let M be a non-empty set endowed with a dense linear order without the smallest and greatest elements. Let (G,+) be a group which has a non-trivial uniquely divisible subgroup. There are given conditions under which every solution F: M×G → M of the translation equation is of the form $F(a,x) = f^{-1}(f(a) + c(x))$ for a ∈ M, x ∈ G with some non-trivial additive function c: G → ℝ and a strictly increasing function f: M → ℝ such that f(M) + c(G) ⊂ f(M). In particular, a problem of J. Tabor is solved.
DOI : 10.4064/ap-64-3-207-214
Keywords: translation equation, linear order, increasing function, additive function

Janusz Brzdęk 1

1
@article{10_4064_ap_64_3_207_214,
     author = {Janusz Brzd\k{e}k},
     title = {On the increasing solutions of the translation equation},
     journal = {Annales Polonici Mathematici},
     pages = {207--214},
     publisher = {mathdoc},
     volume = {64},
     number = {3},
     year = {1996},
     doi = {10.4064/ap-64-3-207-214},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-64-3-207-214/}
}
TY  - JOUR
AU  - Janusz Brzdęk
TI  - On the increasing solutions of the translation equation
JO  - Annales Polonici Mathematici
PY  - 1996
SP  - 207
EP  - 214
VL  - 64
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-64-3-207-214/
DO  - 10.4064/ap-64-3-207-214
LA  - en
ID  - 10_4064_ap_64_3_207_214
ER  - 
%0 Journal Article
%A Janusz Brzdęk
%T On the increasing solutions of the translation equation
%J Annales Polonici Mathematici
%D 1996
%P 207-214
%V 64
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-64-3-207-214/
%R 10.4064/ap-64-3-207-214
%G en
%F 10_4064_ap_64_3_207_214
Janusz Brzdęk. On the increasing solutions of the translation equation. Annales Polonici Mathematici, Tome 64 (1996) no. 3, pp. 207-214. doi : 10.4064/ap-64-3-207-214. http://geodesic.mathdoc.fr/articles/10.4064/ap-64-3-207-214/

Cité par Sources :