On the C⁰-closing lemma
Annales Polonici Mathematici, Tome 64 (1996) no. 2, pp. 131-138.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A proof of the C⁰-closing lemma for noninvertible discrete dynamical systems and its extension to the noncompact case are presented.
DOI : 10.4064/ap-64-2-131-138
Keywords: closing lemma, nonwandering point, periodic point

Anna Kwiecińska 1

1
@article{10_4064_ap_64_2_131_138,
     author = {Anna Kwieci\'nska},
     title = {On the {C⁰-closing} lemma},
     journal = {Annales Polonici Mathematici},
     pages = {131--138},
     publisher = {mathdoc},
     volume = {64},
     number = {2},
     year = {1996},
     doi = {10.4064/ap-64-2-131-138},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-64-2-131-138/}
}
TY  - JOUR
AU  - Anna Kwiecińska
TI  - On the C⁰-closing lemma
JO  - Annales Polonici Mathematici
PY  - 1996
SP  - 131
EP  - 138
VL  - 64
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-64-2-131-138/
DO  - 10.4064/ap-64-2-131-138
LA  - en
ID  - 10_4064_ap_64_2_131_138
ER  - 
%0 Journal Article
%A Anna Kwiecińska
%T On the C⁰-closing lemma
%J Annales Polonici Mathematici
%D 1996
%P 131-138
%V 64
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-64-2-131-138/
%R 10.4064/ap-64-2-131-138
%G en
%F 10_4064_ap_64_2_131_138
Anna Kwiecińska. On the C⁰-closing lemma. Annales Polonici Mathematici, Tome 64 (1996) no. 2, pp. 131-138. doi : 10.4064/ap-64-2-131-138. http://geodesic.mathdoc.fr/articles/10.4064/ap-64-2-131-138/

Cité par Sources :