A topological version of the Ambrosetti-Prodi theorem
Annales Polonici Mathematici, Tome 64 (1996) no. 2, pp. 121-130
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The existence of at least two solutions for nonlinear equations close to semilinear equations at resonance is obtained by the degree theory methods. The same equations have no solutions if one slightly changes the right-hand side. The abstract result is applied to boundary value problems with specific nonlinearities.
Keywords:
multiple solution, resonance, functional-differential equation
Affiliations des auteurs :
Bogdan Przeradzki 1
@article{10_4064_ap_64_2_121_130,
author = {Bogdan Przeradzki},
title = {A topological version of the {Ambrosetti-Prodi} theorem},
journal = {Annales Polonici Mathematici},
pages = {121--130},
publisher = {mathdoc},
volume = {64},
number = {2},
year = {1996},
doi = {10.4064/ap-64-2-121-130},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-64-2-121-130/}
}
TY - JOUR AU - Bogdan Przeradzki TI - A topological version of the Ambrosetti-Prodi theorem JO - Annales Polonici Mathematici PY - 1996 SP - 121 EP - 130 VL - 64 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-64-2-121-130/ DO - 10.4064/ap-64-2-121-130 LA - en ID - 10_4064_ap_64_2_121_130 ER -
Bogdan Przeradzki. A topological version of the Ambrosetti-Prodi theorem. Annales Polonici Mathematici, Tome 64 (1996) no. 2, pp. 121-130. doi: 10.4064/ap-64-2-121-130
Cité par Sources :