Evolution equations with parameter in the hyperbolic case
Annales Polonici Mathematici, Tome 64 (1996) no. 1, pp. 47-60
The purpose of this paper is to give theorems on continuity and differentiability with respect to (h,t) of the solution of the initial value problem du/dt = A(h,t)u + f(h,t), u(0) = u₀(h) with parameter $h ∈ Ω ⊂ ℝ^m$ in the "hyperbolic" case.
Keywords:
evolution problem, stable family of operators, stable approximations of the evolution operator, evolution problem with parameter, hyperbolic case
@article{10_4064_ap_64_1_47_60,
author = {Jan Bochenek and Teresa Winiarska},
title = {Evolution equations with parameter in the hyperbolic case},
journal = {Annales Polonici Mathematici},
pages = {47--60},
year = {1996},
volume = {64},
number = {1},
doi = {10.4064/ap-64-1-47-60},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-64-1-47-60/}
}
TY - JOUR AU - Jan Bochenek AU - Teresa Winiarska TI - Evolution equations with parameter in the hyperbolic case JO - Annales Polonici Mathematici PY - 1996 SP - 47 EP - 60 VL - 64 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-64-1-47-60/ DO - 10.4064/ap-64-1-47-60 LA - en ID - 10_4064_ap_64_1_47_60 ER -
Jan Bochenek; Teresa Winiarska. Evolution equations with parameter in the hyperbolic case. Annales Polonici Mathematici, Tome 64 (1996) no. 1, pp. 47-60. doi: 10.4064/ap-64-1-47-60
Cité par Sources :