Generalized symmetric spaces and minimal models
Annales Polonici Mathematici, Tome 64 (1996) no. 1, pp. 17-35
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove that any compact simply connected manifold carrying a structure of Riemannian 3- or 4-symmetric space is formal in the sense of Sullivan. This result generalizes Sullivan's classical theorem on the formality of symmetric spaces, but the proof is of a different nature, since for generalized symmetric spaces techniques based on the Hodge theory do not work. We use the Thomas theory of minimal models of fibrations and the classification of 3- and 4-symmetric spaces.
Keywords:
minimal model, Koszul complex, generalized symmetric space
Affiliations des auteurs :
Anna Dumańska-Małyszko 1 ; Zofia Stępień 1 ; Aleksy Tralle 1
@article{10_4064_ap_64_1_17_35,
author = {Anna Duma\'nska-Ma{\l}yszko and Zofia St\k{e}pie\'n and Aleksy Tralle},
title = {Generalized symmetric spaces and minimal models},
journal = {Annales Polonici Mathematici},
pages = {17--35},
year = {1996},
volume = {64},
number = {1},
doi = {10.4064/ap-64-1-17-35},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-64-1-17-35/}
}
TY - JOUR AU - Anna Dumańska-Małyszko AU - Zofia Stępień AU - Aleksy Tralle TI - Generalized symmetric spaces and minimal models JO - Annales Polonici Mathematici PY - 1996 SP - 17 EP - 35 VL - 64 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-64-1-17-35/ DO - 10.4064/ap-64-1-17-35 LA - en ID - 10_4064_ap_64_1_17_35 ER -
%0 Journal Article %A Anna Dumańska-Małyszko %A Zofia Stępień %A Aleksy Tralle %T Generalized symmetric spaces and minimal models %J Annales Polonici Mathematici %D 1996 %P 17-35 %V 64 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/ap-64-1-17-35/ %R 10.4064/ap-64-1-17-35 %G en %F 10_4064_ap_64_1_17_35
Anna Dumańska-Małyszko; Zofia Stępień; Aleksy Tralle. Generalized symmetric spaces and minimal models. Annales Polonici Mathematici, Tome 64 (1996) no. 1, pp. 17-35. doi: 10.4064/ap-64-1-17-35
Cité par Sources :