$L^p$-convergence of Bernstein-Kantorovich-type operators
Annales Polonici Mathematici, Tome 63 (1996) no. 3, pp. 273-280
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We study a Kantorovich-type modification of the operators introduced in [1] and we characterize their convergence in the $L^p$-norm. We also furnish a quantitative estimate of the convergence.
Keywords:
Kantorovich operators, quantitative estimates
Affiliations des auteurs :
Michele Campiti 1 ; Giorgio Metafune 1
@article{10_4064_ap_63_3_273_280,
author = {Michele Campiti and Giorgio Metafune},
title = {$L^p$-convergence of {Bernstein-Kantorovich-type} operators},
journal = {Annales Polonici Mathematici},
pages = {273--280},
year = {1996},
volume = {63},
number = {3},
doi = {10.4064/ap-63-3-273-280},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-63-3-273-280/}
}
TY - JOUR AU - Michele Campiti AU - Giorgio Metafune TI - $L^p$-convergence of Bernstein-Kantorovich-type operators JO - Annales Polonici Mathematici PY - 1996 SP - 273 EP - 280 VL - 63 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-63-3-273-280/ DO - 10.4064/ap-63-3-273-280 LA - en ID - 10_4064_ap_63_3_273_280 ER -
%0 Journal Article %A Michele Campiti %A Giorgio Metafune %T $L^p$-convergence of Bernstein-Kantorovich-type operators %J Annales Polonici Mathematici %D 1996 %P 273-280 %V 63 %N 3 %U http://geodesic.mathdoc.fr/articles/10.4064/ap-63-3-273-280/ %R 10.4064/ap-63-3-273-280 %G en %F 10_4064_ap_63_3_273_280
Michele Campiti; Giorgio Metafune. $L^p$-convergence of Bernstein-Kantorovich-type operators. Annales Polonici Mathematici, Tome 63 (1996) no. 3, pp. 273-280. doi: 10.4064/ap-63-3-273-280
Cité par Sources :