$L^p$-convergence of Bernstein-Kantorovich-type operators
Annales Polonici Mathematici, Tome 63 (1996) no. 3, pp. 273-280.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study a Kantorovich-type modification of the operators introduced in [1] and we characterize their convergence in the $L^p$-norm. We also furnish a quantitative estimate of the convergence.
DOI : 10.4064/ap-63-3-273-280
Keywords: Kantorovich operators, quantitative estimates

Michele Campiti 1 ; Giorgio Metafune 1

1
@article{10_4064_ap_63_3_273_280,
     author = {Michele Campiti and Giorgio Metafune},
     title = {$L^p$-convergence of {Bernstein-Kantorovich-type} operators},
     journal = {Annales Polonici Mathematici},
     pages = {273--280},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {1996},
     doi = {10.4064/ap-63-3-273-280},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-63-3-273-280/}
}
TY  - JOUR
AU  - Michele Campiti
AU  - Giorgio Metafune
TI  - $L^p$-convergence of Bernstein-Kantorovich-type operators
JO  - Annales Polonici Mathematici
PY  - 1996
SP  - 273
EP  - 280
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-63-3-273-280/
DO  - 10.4064/ap-63-3-273-280
LA  - en
ID  - 10_4064_ap_63_3_273_280
ER  - 
%0 Journal Article
%A Michele Campiti
%A Giorgio Metafune
%T $L^p$-convergence of Bernstein-Kantorovich-type operators
%J Annales Polonici Mathematici
%D 1996
%P 273-280
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-63-3-273-280/
%R 10.4064/ap-63-3-273-280
%G en
%F 10_4064_ap_63_3_273_280
Michele Campiti; Giorgio Metafune. $L^p$-convergence of Bernstein-Kantorovich-type operators. Annales Polonici Mathematici, Tome 63 (1996) no. 3, pp. 273-280. doi : 10.4064/ap-63-3-273-280. http://geodesic.mathdoc.fr/articles/10.4064/ap-63-3-273-280/

Cité par Sources :