Logarithmic structure of the generalized bifurcation set
Annales Polonici Mathematici, Tome 63 (1996) no. 2, pp. 187-197
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $G: ℂ^{n} × ℂ^{r} → ℂ$ be a holomorphic family of functions. If $Λ ⊂ ℂ^{n} × ℂ^{r}$, $π_r: ℂ^{n} × ℂ^{r} → ℂ^{r}$ is an analytic variety then $Q_{Λ}(G) = {(x,u) ∈ ℂ^{n} × ℂ^{r}: G(·,u)$ has a critical point in $Λ ∩ π_{r}^{-1}(u)} is a natural generalization of the bifurcation variety of G. We investigate the local structure of $Q_{Λ}(G)$ for locally trivial deformations of $Λ₀ = π_{r}^{-1}(0)$. In particular, we construct an algorithm for determining logarithmic stratifications provided G is versal.
Keywords:
bifurcations, singularities, logarithmic stratifications
Affiliations des auteurs :
S. Janeczko 1
@article{10_4064_ap_63_2_187_197,
author = {S. Janeczko},
title = {Logarithmic structure of the generalized bifurcation set},
journal = {Annales Polonici Mathematici},
pages = {187--197},
year = {1996},
volume = {63},
number = {2},
doi = {10.4064/ap-63-2-187-197},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-63-2-187-197/}
}
TY - JOUR AU - S. Janeczko TI - Logarithmic structure of the generalized bifurcation set JO - Annales Polonici Mathematici PY - 1996 SP - 187 EP - 197 VL - 63 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-63-2-187-197/ DO - 10.4064/ap-63-2-187-197 LA - en ID - 10_4064_ap_63_2_187_197 ER -
S. Janeczko. Logarithmic structure of the generalized bifurcation set. Annales Polonici Mathematici, Tome 63 (1996) no. 2, pp. 187-197. doi: 10.4064/ap-63-2-187-197
Cité par Sources :