Logarithmic structure of the generalized bifurcation set
Annales Polonici Mathematici, Tome 63 (1996) no. 2, pp. 187-197.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $G: ℂ^{n} × ℂ^{r} → ℂ$ be a holomorphic family of functions. If $Λ ⊂ ℂ^{n} × ℂ^{r}$, $π_r: ℂ^{n} × ℂ^{r} → ℂ^{r}$ is an analytic variety then   $Q_{Λ}(G) = {(x,u) ∈ ℂ^{n} × ℂ^{r}: G(·,u)$ has a critical point in $Λ ∩ π_{r}^{-1}(u)} is a natural generalization of the bifurcation variety of G. We investigate the local structure of $Q_{Λ}(G)$ for locally trivial deformations of $Λ₀ = π_{r}^{-1}(0)$. In particular, we construct an algorithm for determining logarithmic stratifications provided G is versal.
DOI : 10.4064/ap-63-2-187-197
Keywords: bifurcations, singularities, logarithmic stratifications

S. Janeczko 1

1
@article{10_4064_ap_63_2_187_197,
     author = {S. Janeczko},
     title = {Logarithmic structure of the generalized bifurcation set},
     journal = {Annales Polonici Mathematici},
     pages = {187--197},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {1996},
     doi = {10.4064/ap-63-2-187-197},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-63-2-187-197/}
}
TY  - JOUR
AU  - S. Janeczko
TI  - Logarithmic structure of the generalized bifurcation set
JO  - Annales Polonici Mathematici
PY  - 1996
SP  - 187
EP  - 197
VL  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-63-2-187-197/
DO  - 10.4064/ap-63-2-187-197
LA  - en
ID  - 10_4064_ap_63_2_187_197
ER  - 
%0 Journal Article
%A S. Janeczko
%T Logarithmic structure of the generalized bifurcation set
%J Annales Polonici Mathematici
%D 1996
%P 187-197
%V 63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-63-2-187-197/
%R 10.4064/ap-63-2-187-197
%G en
%F 10_4064_ap_63_2_187_197
S. Janeczko. Logarithmic structure of the generalized bifurcation set. Annales Polonici Mathematici, Tome 63 (1996) no. 2, pp. 187-197. doi : 10.4064/ap-63-2-187-197. http://geodesic.mathdoc.fr/articles/10.4064/ap-63-2-187-197/

Cité par Sources :