On a nonlinear second order periodic boundaryvalue problem with Carathéodory functions
Annales Polonici Mathematici, Tome 62 (1995) no. 3, pp. 283-291
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The periodic boundary value problem u''(t) = f(t,u(t),u'(t)) with u(0) = u(2π) and u'(0) = u'(2π) is studied using the generalized method of upper and lower solutions, where f is a Carathéodory function satisfying a Nagumo condition. The existence of solutions is obtained under suitable conditions on f. The results improve and generalize the work of M.-X. Wang et al. [5].
Keywords:
two-point boundary value problems, upper and lower solutions, Nagumo condition, existence, Carathéodory functions
Affiliations des auteurs :
Wenjie Gao 1 ; Junyu Wang 1
@article{10_4064_ap_62_3_283_291,
author = {Wenjie Gao and Junyu Wang},
title = {On a nonlinear second order periodic boundaryvalue problem with {Carath\'eodory} functions},
journal = {Annales Polonici Mathematici},
pages = {283--291},
publisher = {mathdoc},
volume = {62},
number = {3},
year = {1995},
doi = {10.4064/ap-62-3-283-291},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-62-3-283-291/}
}
TY - JOUR AU - Wenjie Gao AU - Junyu Wang TI - On a nonlinear second order periodic boundaryvalue problem with Carathéodory functions JO - Annales Polonici Mathematici PY - 1995 SP - 283 EP - 291 VL - 62 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-62-3-283-291/ DO - 10.4064/ap-62-3-283-291 LA - en ID - 10_4064_ap_62_3_283_291 ER -
%0 Journal Article %A Wenjie Gao %A Junyu Wang %T On a nonlinear second order periodic boundaryvalue problem with Carathéodory functions %J Annales Polonici Mathematici %D 1995 %P 283-291 %V 62 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap-62-3-283-291/ %R 10.4064/ap-62-3-283-291 %G en %F 10_4064_ap_62_3_283_291
Wenjie Gao; Junyu Wang. On a nonlinear second order periodic boundaryvalue problem with Carathéodory functions. Annales Polonici Mathematici, Tome 62 (1995) no. 3, pp. 283-291. doi: 10.4064/ap-62-3-283-291
Cité par Sources :