Alexander's projective capacity for polydisks and ellipsoids in $ℂ^N$
Annales Polonici Mathematici, Tome 62 (1995) no. 3, pp. 245-264.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Alexander's projective capacity for the polydisk and the ellipsoid in $ℂ^N$ is computed. Sharper versions of two inequalities concerning this capacity and some other capacities in $ℂ^N$ are given. A sequence of orthogonal polynomials with respect to an appropriately defined measure supported on a compact subset K in $ℂ^N$ is proved to have an asymptotic behaviour in $ℂ^N$ similar to that of the Siciak homogeneous extremal function associated with K.
DOI : 10.4064/ap-62-3-245-264
Keywords: ellipsoid, projective capacity, extremal function

Mieczysław Jędrzejowski 1

1
@article{10_4064_ap_62_3_245_264,
     author = {Mieczys{\l}aw J\k{e}drzejowski},
     title = {Alexander's projective capacity for polydisks and ellipsoids in $\ensuremath{\mathbb{C}}^N$},
     journal = {Annales Polonici Mathematici},
     pages = {245--264},
     publisher = {mathdoc},
     volume = {62},
     number = {3},
     year = {1995},
     doi = {10.4064/ap-62-3-245-264},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-62-3-245-264/}
}
TY  - JOUR
AU  - Mieczysław Jędrzejowski
TI  - Alexander's projective capacity for polydisks and ellipsoids in $ℂ^N$
JO  - Annales Polonici Mathematici
PY  - 1995
SP  - 245
EP  - 264
VL  - 62
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-62-3-245-264/
DO  - 10.4064/ap-62-3-245-264
LA  - en
ID  - 10_4064_ap_62_3_245_264
ER  - 
%0 Journal Article
%A Mieczysław Jędrzejowski
%T Alexander's projective capacity for polydisks and ellipsoids in $ℂ^N$
%J Annales Polonici Mathematici
%D 1995
%P 245-264
%V 62
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-62-3-245-264/
%R 10.4064/ap-62-3-245-264
%G en
%F 10_4064_ap_62_3_245_264
Mieczysław Jędrzejowski. Alexander's projective capacity for polydisks and ellipsoids in $ℂ^N$. Annales Polonici Mathematici, Tome 62 (1995) no. 3, pp. 245-264. doi : 10.4064/ap-62-3-245-264. http://geodesic.mathdoc.fr/articles/10.4064/ap-62-3-245-264/

Cité par Sources :