Alexander's projective capacity for polydisks and ellipsoids in $ℂ^N$
Annales Polonici Mathematici, Tome 62 (1995) no. 3, pp. 245-264
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Alexander's projective capacity for the polydisk and the ellipsoid in $ℂ^N$ is computed. Sharper versions of two inequalities concerning this capacity and some other capacities in $ℂ^N$ are given. A sequence of orthogonal polynomials with respect to an appropriately defined measure supported on a compact subset K in $ℂ^N$ is proved to have an asymptotic behaviour in $ℂ^N$ similar to that of the Siciak homogeneous extremal function associated with K.
Keywords:
ellipsoid, projective capacity, extremal function
Affiliations des auteurs :
Mieczysław Jędrzejowski 1
@article{10_4064_ap_62_3_245_264,
author = {Mieczys{\l}aw J\k{e}drzejowski},
title = {Alexander's projective capacity for polydisks and ellipsoids in $\ensuremath{\mathbb{C}}^N$},
journal = {Annales Polonici Mathematici},
pages = {245--264},
publisher = {mathdoc},
volume = {62},
number = {3},
year = {1995},
doi = {10.4064/ap-62-3-245-264},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-62-3-245-264/}
}
TY - JOUR AU - Mieczysław Jędrzejowski TI - Alexander's projective capacity for polydisks and ellipsoids in $ℂ^N$ JO - Annales Polonici Mathematici PY - 1995 SP - 245 EP - 264 VL - 62 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-62-3-245-264/ DO - 10.4064/ap-62-3-245-264 LA - en ID - 10_4064_ap_62_3_245_264 ER -
%0 Journal Article %A Mieczysław Jędrzejowski %T Alexander's projective capacity for polydisks and ellipsoids in $ℂ^N$ %J Annales Polonici Mathematici %D 1995 %P 245-264 %V 62 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap-62-3-245-264/ %R 10.4064/ap-62-3-245-264 %G en %F 10_4064_ap_62_3_245_264
Mieczysław Jędrzejowski. Alexander's projective capacity for polydisks and ellipsoids in $ℂ^N$. Annales Polonici Mathematici, Tome 62 (1995) no. 3, pp. 245-264. doi: 10.4064/ap-62-3-245-264
Cité par Sources :