Bounded projections in weighted function spaces in a generalized unit disc
Annales Polonici Mathematici, Tome 62 (1995) no. 3, pp. 193-218.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $M_{m,n}$ be the space of all complex m × n matrices. The generalized unit disc in $M_{m,n}$ is >br>    $R_{m,n} = {Z ∈ M_{m,n}: I^{(m)} - ZZ* is positive definite}$. Here $I^{(m)} ∈ M_{m,m}$ is the unit matrix. If 1 ≤ p ∞ and α > -1, then $L^{p}_{α}(R_{m,n})$ is defined to be the space $L^p{R_{m,n}; [det(I^{(m)} - ZZ*)]^α dμ_{m,n}(Z)}$, where $μ_{m,n}$ is the Lebesgue measure in $M_{m,n}$, and $H^p_α(R_{m,n}) ⊂ L^{p}_{α}(R_{m,n})$ is the subspace of holomorphic functions. In [8,9] M. M. Djrbashian and A. H. Karapetyan proved that, if $Reβ > (α+1)/p -1$ (for 1 p ∞) and Re β ≥ α (for p = 1), then     $f(
DOI : 10.4064/ap-62-3-193-218
Keywords: generalized unit disc, holomorphic and pluriharmonic functions, weighted spaces, integral representations, bounded integral operators

A. Karapetyan 1

1
@article{10_4064_ap_62_3_193_218,
     author = {A. Karapetyan},
     title = {Bounded projections in weighted function spaces in a generalized unit disc},
     journal = {Annales Polonici Mathematici},
     pages = {193--218},
     publisher = {mathdoc},
     volume = {62},
     number = {3},
     year = {1995},
     doi = {10.4064/ap-62-3-193-218},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-62-3-193-218/}
}
TY  - JOUR
AU  - A. Karapetyan
TI  - Bounded projections in weighted function spaces in a generalized unit disc
JO  - Annales Polonici Mathematici
PY  - 1995
SP  - 193
EP  - 218
VL  - 62
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-62-3-193-218/
DO  - 10.4064/ap-62-3-193-218
LA  - en
ID  - 10_4064_ap_62_3_193_218
ER  - 
%0 Journal Article
%A A. Karapetyan
%T Bounded projections in weighted function spaces in a generalized unit disc
%J Annales Polonici Mathematici
%D 1995
%P 193-218
%V 62
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-62-3-193-218/
%R 10.4064/ap-62-3-193-218
%G en
%F 10_4064_ap_62_3_193_218
A. Karapetyan. Bounded projections in weighted function spaces in a generalized unit disc. Annales Polonici Mathematici, Tome 62 (1995) no. 3, pp. 193-218. doi : 10.4064/ap-62-3-193-218. http://geodesic.mathdoc.fr/articles/10.4064/ap-62-3-193-218/

Cité par Sources :