Bounded projections in weighted function spaces in a generalized unit disc
Annales Polonici Mathematici, Tome 62 (1995) no. 3, pp. 193-218
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $M_{m,n}$ be the space of all complex m × n matrices. The generalized unit disc in $M_{m,n}$ is >br> $R_{m,n} = {Z ∈ M_{m,n}: I^{(m)} - ZZ* is positive definite}$. Here $I^{(m)} ∈ M_{m,m}$ is the unit matrix. If 1 ≤ p ∞ and α > -1, then $L^{p}_{α}(R_{m,n})$ is defined to be the space $L^p{R_{m,n}; [det(I^{(m)} - ZZ*)]^α dμ_{m,n}(Z)}$, where $μ_{m,n}$ is the Lebesgue measure in $M_{m,n}$, and $H^p_α(R_{m,n}) ⊂ L^{p}_{α}(R_{m,n})$ is the subspace of holomorphic functions. In [8,9] M. M. Djrbashian and A. H. Karapetyan proved that, if $Reβ > (α+1)/p -1$ (for 1 p ∞) and Re β ≥ α (for p = 1), then $f(
Keywords:
generalized unit disc, holomorphic and pluriharmonic functions, weighted spaces, integral representations, bounded integral operators
Affiliations des auteurs :
A. Karapetyan 1
@article{10_4064_ap_62_3_193_218,
author = {A. Karapetyan},
title = {Bounded projections in weighted function spaces in a generalized unit disc},
journal = {Annales Polonici Mathematici},
pages = {193--218},
publisher = {mathdoc},
volume = {62},
number = {3},
year = {1995},
doi = {10.4064/ap-62-3-193-218},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-62-3-193-218/}
}
TY - JOUR AU - A. Karapetyan TI - Bounded projections in weighted function spaces in a generalized unit disc JO - Annales Polonici Mathematici PY - 1995 SP - 193 EP - 218 VL - 62 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-62-3-193-218/ DO - 10.4064/ap-62-3-193-218 LA - en ID - 10_4064_ap_62_3_193_218 ER -
%0 Journal Article %A A. Karapetyan %T Bounded projections in weighted function spaces in a generalized unit disc %J Annales Polonici Mathematici %D 1995 %P 193-218 %V 62 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap-62-3-193-218/ %R 10.4064/ap-62-3-193-218 %G en %F 10_4064_ap_62_3_193_218
A. Karapetyan. Bounded projections in weighted function spaces in a generalized unit disc. Annales Polonici Mathematici, Tome 62 (1995) no. 3, pp. 193-218. doi: 10.4064/ap-62-3-193-218
Cité par Sources :