A counterexample to a conjecture of Drużkowski and Rusek
Annales Polonici Mathematici, Tome 62 (1995) no. 2, pp. 173-176
Let F = X + H be a cubic homogeneous polynomial automorphism from $ℂ^n$ to $ℂ^n$. Let $p$ be the nilpotence index of the Jacobian matrix JH. It was conjectured by Drużkowski and Rusek in [4] that $deg F^{-1} ≤ 3^{p-1}$. We show that the conjecture is true if n ≤ 4 and false if n ≥ 5.
@article{10_4064_ap_62_2_173_176,
author = {Arno van den Essen},
title = {A counterexample to a conjecture of {Dru\.zkowski} and {Rusek}},
journal = {Annales Polonici Mathematici},
pages = {173--176},
year = {1995},
volume = {62},
number = {2},
doi = {10.4064/ap-62-2-173-176},
language = {pl},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-62-2-173-176/}
}
TY - JOUR AU - Arno van den Essen TI - A counterexample to a conjecture of Drużkowski and Rusek JO - Annales Polonici Mathematici PY - 1995 SP - 173 EP - 176 VL - 62 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-62-2-173-176/ DO - 10.4064/ap-62-2-173-176 LA - pl ID - 10_4064_ap_62_2_173_176 ER -
Arno van den Essen. A counterexample to a conjecture of Drużkowski and Rusek. Annales Polonici Mathematici, Tome 62 (1995) no. 2, pp. 173-176. doi: 10.4064/ap-62-2-173-176
Cité par Sources :