Global attractor of a differentiable autonomous system on the plane
Annales Polonici Mathematici, Tome 62 (1995) no. 2, pp. 143-154.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the structure of a differentiable autonomous system on the plane with non-positive divergence outside a bounded set. It is shown that under certain conditions such a system has a global attractor. The main result here can be seen as an improvement of the results of Olech and Meisters in [7,9] concerning the global asymptotic stability conjecture of Markus and Yamabe and the Jacobian Conjecture.
DOI : 10.4064/ap-62-2-143-154
Keywords: Markus-Yamabe Conjecture, asymptotically stable, Jacobian Conjecture

Chau Nguyen 1

1
@article{10_4064_ap_62_2_143_154,
     author = {Chau Nguyen},
     title = {Global attractor of a differentiable autonomous system on the plane},
     journal = {Annales Polonici Mathematici},
     pages = {143--154},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {1995},
     doi = {10.4064/ap-62-2-143-154},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-62-2-143-154/}
}
TY  - JOUR
AU  - Chau Nguyen
TI  - Global attractor of a differentiable autonomous system on the plane
JO  - Annales Polonici Mathematici
PY  - 1995
SP  - 143
EP  - 154
VL  - 62
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-62-2-143-154/
DO  - 10.4064/ap-62-2-143-154
LA  - en
ID  - 10_4064_ap_62_2_143_154
ER  - 
%0 Journal Article
%A Chau Nguyen
%T Global attractor of a differentiable autonomous system on the plane
%J Annales Polonici Mathematici
%D 1995
%P 143-154
%V 62
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-62-2-143-154/
%R 10.4064/ap-62-2-143-154
%G en
%F 10_4064_ap_62_2_143_154
Chau Nguyen. Global attractor of a differentiable autonomous system on the plane. Annales Polonici Mathematici, Tome 62 (1995) no. 2, pp. 143-154. doi : 10.4064/ap-62-2-143-154. http://geodesic.mathdoc.fr/articles/10.4064/ap-62-2-143-154/

Cité par Sources :