On positive solutions of a class of second order nonlinear differential equations on the halfline
Annales Polonici Mathematici, Tome 62 (1995) no. 2, pp. 123-142
The differential equation of the form $(q(t)k(u)(u')^a)' = f(t)h(u)u'$, a ∈ (0,∞), is considered and solutions u with u(0) = 0 and (u(t))² + (u'(t))² > 0 on (0,∞) are studied. Theorems about existence, uniqueness, boundedness and dependence of solutions on a parameter are given.
Keywords:
nonlinear second order differential equation, nonnegative solution, existence and uniqueness of solutions, bounded solution, dependence of solutions on the parameter, boundary value problem on a noncompact interval, Tikhonov-Schauder fixed point theorem
@article{10_4064_ap_62_2_123_142,
author = {Svatoslav Stan\v{e}k},
title = {On positive solutions of a class of second order nonlinear differential equations on the halfline},
journal = {Annales Polonici Mathematici},
pages = {123--142},
year = {1995},
volume = {62},
number = {2},
doi = {10.4064/ap-62-2-123-142},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-62-2-123-142/}
}
TY - JOUR AU - Svatoslav Staněk TI - On positive solutions of a class of second order nonlinear differential equations on the halfline JO - Annales Polonici Mathematici PY - 1995 SP - 123 EP - 142 VL - 62 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-62-2-123-142/ DO - 10.4064/ap-62-2-123-142 LA - en ID - 10_4064_ap_62_2_123_142 ER -
%0 Journal Article %A Svatoslav Staněk %T On positive solutions of a class of second order nonlinear differential equations on the halfline %J Annales Polonici Mathematici %D 1995 %P 123-142 %V 62 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/ap-62-2-123-142/ %R 10.4064/ap-62-2-123-142 %G en %F 10_4064_ap_62_2_123_142
Svatoslav Staněk. On positive solutions of a class of second order nonlinear differential equations on the halfline. Annales Polonici Mathematici, Tome 62 (1995) no. 2, pp. 123-142. doi: 10.4064/ap-62-2-123-142
Cité par Sources :