Convergence of optimal solutions in control problems for hyperbolic equations
Annales Polonici Mathematici, Tome 62 (1995) no. 2, pp. 111-121
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
A sequence of optimal control problems for systems governed by linear hyperbolic equations with the nonhomogeneous Neumann boundary conditions is considered. The integral cost functionals and the differential operators in the equations depend on the parameter k. We deal with the limit behaviour, as k → ∞, of the sequence of optimal solutions using the notions of G- and Γ-convergences. The conditions under which this sequence converges to an optimal solution for the limit problem are given.
Keywords:
control problem, hyperbolic equation, G-convergence, Γ-convergence
Affiliations des auteurs :
S. Migórski 1
@article{10_4064_ap_62_2_111_121,
author = {S. Mig\'orski},
title = {Convergence of optimal solutions in control problems for hyperbolic equations},
journal = {Annales Polonici Mathematici},
pages = {111--121},
year = {1995},
volume = {62},
number = {2},
doi = {10.4064/ap-62-2-111-121},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-62-2-111-121/}
}
TY - JOUR AU - S. Migórski TI - Convergence of optimal solutions in control problems for hyperbolic equations JO - Annales Polonici Mathematici PY - 1995 SP - 111 EP - 121 VL - 62 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-62-2-111-121/ DO - 10.4064/ap-62-2-111-121 LA - en ID - 10_4064_ap_62_2_111_121 ER -
%0 Journal Article %A S. Migórski %T Convergence of optimal solutions in control problems for hyperbolic equations %J Annales Polonici Mathematici %D 1995 %P 111-121 %V 62 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/ap-62-2-111-121/ %R 10.4064/ap-62-2-111-121 %G en %F 10_4064_ap_62_2_111_121
S. Migórski. Convergence of optimal solutions in control problems for hyperbolic equations. Annales Polonici Mathematici, Tome 62 (1995) no. 2, pp. 111-121. doi: 10.4064/ap-62-2-111-121
Cité par Sources :