Convergence of optimal solutions in control problems for hyperbolic equations
Annales Polonici Mathematici, Tome 62 (1995) no. 2, pp. 111-121.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A sequence of optimal control problems for systems governed by linear hyperbolic equations with the nonhomogeneous Neumann boundary conditions is considered. The integral cost functionals and the differential operators in the equations depend on the parameter k. We deal with the limit behaviour, as k → ∞, of the sequence of optimal solutions using the notions of G- and Γ-convergences. The conditions under which this sequence converges to an optimal solution for the limit problem are given.
DOI : 10.4064/ap-62-2-111-121
Keywords: control problem, hyperbolic equation, G-convergence, Γ-convergence

S. Migórski 1

1
@article{10_4064_ap_62_2_111_121,
     author = {S. Mig\'orski},
     title = {Convergence of optimal solutions in control problems for hyperbolic equations},
     journal = {Annales Polonici Mathematici},
     pages = {111--121},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {1995},
     doi = {10.4064/ap-62-2-111-121},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-62-2-111-121/}
}
TY  - JOUR
AU  - S. Migórski
TI  - Convergence of optimal solutions in control problems for hyperbolic equations
JO  - Annales Polonici Mathematici
PY  - 1995
SP  - 111
EP  - 121
VL  - 62
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-62-2-111-121/
DO  - 10.4064/ap-62-2-111-121
LA  - en
ID  - 10_4064_ap_62_2_111_121
ER  - 
%0 Journal Article
%A S. Migórski
%T Convergence of optimal solutions in control problems for hyperbolic equations
%J Annales Polonici Mathematici
%D 1995
%P 111-121
%V 62
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-62-2-111-121/
%R 10.4064/ap-62-2-111-121
%G en
%F 10_4064_ap_62_2_111_121
S. Migórski. Convergence of optimal solutions in control problems for hyperbolic equations. Annales Polonici Mathematici, Tome 62 (1995) no. 2, pp. 111-121. doi : 10.4064/ap-62-2-111-121. http://geodesic.mathdoc.fr/articles/10.4064/ap-62-2-111-121/

Cité par Sources :