Weak and strong topologies and integral equations in Banach spaces
Annales Polonici Mathematici, Tome 61 (1995) no. 3, pp. 245-260
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The Schauder-Tikhonov theorem in locally convex topological spaces and an extension of Krasnosel'skiĭ's fixed point theorem due to Nashed and Wong are used to establish existence of $L^α$ and C solutions to Volterra and Hammerstein integral equations in Banach spaces.
Keywords:
Volterra, Hammerstein, existence, integral equations in abstract spaces
Affiliations des auteurs :
Donal O'Regan 1
@article{10_4064_ap_61_3_245_260,
author = {Donal O'Regan},
title = {Weak and strong topologies and integral equations in {Banach} spaces},
journal = {Annales Polonici Mathematici},
pages = {245--260},
year = {1995},
volume = {61},
number = {3},
doi = {10.4064/ap-61-3-245-260},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-61-3-245-260/}
}
TY - JOUR AU - Donal O'Regan TI - Weak and strong topologies and integral equations in Banach spaces JO - Annales Polonici Mathematici PY - 1995 SP - 245 EP - 260 VL - 61 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-61-3-245-260/ DO - 10.4064/ap-61-3-245-260 LA - en ID - 10_4064_ap_61_3_245_260 ER -
Donal O'Regan. Weak and strong topologies and integral equations in Banach spaces. Annales Polonici Mathematici, Tome 61 (1995) no. 3, pp. 245-260. doi: 10.4064/ap-61-3-245-260
Cité par Sources :