Starlikeness of functions satisfying a differential inequality
Annales Polonici Mathematici, Tome 61 (1995) no. 2, pp. 135-140.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In a recent paper Fournier and Ruscheweyh established a theorem related to a certain functional. We extend their result differently, and then use it to obtain a precise upper bound on α so that for f analytic in |z| 1, f(0) = f'(0) - 1 = 0 and satisfying Re{zf''(z)} > -λ, the function f is starlike.
DOI : 10.4064/ap-61-2-135-140
Keywords: univalent, convex, starlike, close-to-convex functions, duality of Hadamard products

Rosihan Ali 1 ; S. Ponnusamy 1 ; Vikramaditya Singh 1

1
@article{10_4064_ap_61_2_135_140,
     author = {Rosihan Ali and S. Ponnusamy and Vikramaditya Singh},
     title = {Starlikeness of functions satisfying a differential inequality},
     journal = {Annales Polonici Mathematici},
     pages = {135--140},
     publisher = {mathdoc},
     volume = {61},
     number = {2},
     year = {1995},
     doi = {10.4064/ap-61-2-135-140},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-61-2-135-140/}
}
TY  - JOUR
AU  - Rosihan Ali
AU  - S. Ponnusamy
AU  - Vikramaditya Singh
TI  - Starlikeness of functions satisfying a differential inequality
JO  - Annales Polonici Mathematici
PY  - 1995
SP  - 135
EP  - 140
VL  - 61
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-61-2-135-140/
DO  - 10.4064/ap-61-2-135-140
LA  - en
ID  - 10_4064_ap_61_2_135_140
ER  - 
%0 Journal Article
%A Rosihan Ali
%A S. Ponnusamy
%A Vikramaditya Singh
%T Starlikeness of functions satisfying a differential inequality
%J Annales Polonici Mathematici
%D 1995
%P 135-140
%V 61
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-61-2-135-140/
%R 10.4064/ap-61-2-135-140
%G en
%F 10_4064_ap_61_2_135_140
Rosihan Ali; S. Ponnusamy; Vikramaditya Singh. Starlikeness of functions satisfying a differential inequality. Annales Polonici Mathematici, Tome 61 (1995) no. 2, pp. 135-140. doi : 10.4064/ap-61-2-135-140. http://geodesic.mathdoc.fr/articles/10.4064/ap-61-2-135-140/

Cité par Sources :