Between the Paley-Wiener theorem and the Bochner tube theorem
Annales Polonici Mathematici, Tome 60 (1994) no. 3, pp. 299-304.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We present the classical Paley-Wiener-Schwartz theorem [1] on the Laplace transform of a compactly supported distribution in a new framework which arises naturally in the study of the Mellin transformation. In particular, sufficient conditions for a function to be the Mellin (Laplace) transform of a compactly supported distribution are given in the form resembling the Bochner tube theorem [2].
DOI : 10.4064/ap-60-3-299-304
Keywords: Mellin distributions, Bochner tube theorem

Zofia Szmydt 1 ; Bogdan Ziemian 1

1
@article{10_4064_ap_60_3_299_304,
     author = {Zofia Szmydt and Bogdan Ziemian},
     title = {Between the {Paley-Wiener} theorem and the {Bochner} tube theorem},
     journal = {Annales Polonici Mathematici},
     pages = {299--304},
     publisher = {mathdoc},
     volume = {60},
     number = {3},
     year = {1994},
     doi = {10.4064/ap-60-3-299-304},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-60-3-299-304/}
}
TY  - JOUR
AU  - Zofia Szmydt
AU  - Bogdan Ziemian
TI  - Between the Paley-Wiener theorem and the Bochner tube theorem
JO  - Annales Polonici Mathematici
PY  - 1994
SP  - 299
EP  - 304
VL  - 60
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-60-3-299-304/
DO  - 10.4064/ap-60-3-299-304
LA  - en
ID  - 10_4064_ap_60_3_299_304
ER  - 
%0 Journal Article
%A Zofia Szmydt
%A Bogdan Ziemian
%T Between the Paley-Wiener theorem and the Bochner tube theorem
%J Annales Polonici Mathematici
%D 1994
%P 299-304
%V 60
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-60-3-299-304/
%R 10.4064/ap-60-3-299-304
%G en
%F 10_4064_ap_60_3_299_304
Zofia Szmydt; Bogdan Ziemian. Between the Paley-Wiener theorem and the Bochner tube theorem. Annales Polonici Mathematici, Tome 60 (1994) no. 3, pp. 299-304. doi : 10.4064/ap-60-3-299-304. http://geodesic.mathdoc.fr/articles/10.4064/ap-60-3-299-304/

Cité par Sources :