Nonlinear eigenvalue problems for fourth order ordinary differential equations
Annales Polonici Mathematici, Tome 60 (1994) no. 3, pp. 249-253.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

This paper was inspired by the works of Chiappinelli ([3]) and Schmitt and Smith ([7]). We study the problem ℒu = λau + f(·,u,u',u'',u''') with separated boundary conditions on [0,π], where ℒ is a composition of two operators of Sturm-Liouville type. We assume that the nonlinear perturbation f satisfies the inequality |f(x,u,u',u'',u''')| ≤ M|u|. Because of the presence of f the considered equation does not in general have a linearization about 0. For this reason the global bifurcation theorem of Rabinowitz ([5], [6]) is not applicable here. We use the properties of Leray-Schauder degree to establish the existence of nontrivial solutions and describe their location. The results obtained are similar to those proved by Chiappinelli for Sturm-Liouville operators.
DOI : 10.4064/ap-60-3-249-253
Keywords: bifurcation point, bifurcation interval, Leray-Schauder degree, characteristic value

Jolanta Przybycin 1

1
@article{10_4064_ap_60_3_249_253,
     author = {Jolanta Przybycin},
     title = {Nonlinear eigenvalue problems for fourth order ordinary differential equations},
     journal = {Annales Polonici Mathematici},
     pages = {249--253},
     publisher = {mathdoc},
     volume = {60},
     number = {3},
     year = {1994},
     doi = {10.4064/ap-60-3-249-253},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-60-3-249-253/}
}
TY  - JOUR
AU  - Jolanta Przybycin
TI  - Nonlinear eigenvalue problems for fourth order ordinary differential equations
JO  - Annales Polonici Mathematici
PY  - 1994
SP  - 249
EP  - 253
VL  - 60
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-60-3-249-253/
DO  - 10.4064/ap-60-3-249-253
LA  - en
ID  - 10_4064_ap_60_3_249_253
ER  - 
%0 Journal Article
%A Jolanta Przybycin
%T Nonlinear eigenvalue problems for fourth order ordinary differential equations
%J Annales Polonici Mathematici
%D 1994
%P 249-253
%V 60
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-60-3-249-253/
%R 10.4064/ap-60-3-249-253
%G en
%F 10_4064_ap_60_3_249_253
Jolanta Przybycin. Nonlinear eigenvalue problems for fourth order ordinary differential equations. Annales Polonici Mathematici, Tome 60 (1994) no. 3, pp. 249-253. doi : 10.4064/ap-60-3-249-253. http://geodesic.mathdoc.fr/articles/10.4064/ap-60-3-249-253/

Cité par Sources :