On the uniqueness of continuous solutions of functional equations
Annales Polonici Mathematici, Tome 60 (1994) no. 3, pp. 231-239
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider the problem of the vanishing of non-negative continuous solutions ψ of the functional inequalities (1) ψ(f(x)) ≤ β(x,ψ(x)) and (2) α(x,ψ(x)) ≤ ψ(f(x)) ≤ β(x,ψ(x)), where x varies in a fixed real interval I. As a consequence we obtain some results on the uniqueness of continuous solutions φ :I → Y of the equation (3) φ(f(x)) = g(x,φ(x)), where Y denotes an arbitrary metric space.
Keywords:
functional equation, functional inequality, periodic point, cycle
Affiliations des auteurs :
Bolesław Gaweł 1
@article{10_4064_ap_60_3_231_239,
author = {Boles{\l}aw Gawe{\l}},
title = {On the uniqueness of continuous solutions of functional equations},
journal = {Annales Polonici Mathematici},
pages = {231--239},
year = {1994},
volume = {60},
number = {3},
doi = {10.4064/ap-60-3-231-239},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-60-3-231-239/}
}
TY - JOUR AU - Bolesław Gaweł TI - On the uniqueness of continuous solutions of functional equations JO - Annales Polonici Mathematici PY - 1994 SP - 231 EP - 239 VL - 60 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-60-3-231-239/ DO - 10.4064/ap-60-3-231-239 LA - en ID - 10_4064_ap_60_3_231_239 ER -
Bolesław Gaweł. On the uniqueness of continuous solutions of functional equations. Annales Polonici Mathematici, Tome 60 (1994) no. 3, pp. 231-239. doi: 10.4064/ap-60-3-231-239
Cité par Sources :