On the uniqueness of continuous solutions of functional equations
Annales Polonici Mathematici, Tome 60 (1994) no. 3, pp. 231-239.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider the problem of the vanishing of non-negative continuous solutions ψ of the functional inequalities (1)   ψ(f(x)) ≤ β(x,ψ(x)) and (2)   α(x,ψ(x)) ≤ ψ(f(x)) ≤ β(x,ψ(x)), where x varies in a fixed real interval I. As a consequence we obtain some results on the uniqueness of continuous solutions φ :I → Y of the equation (3)  φ(f(x)) = g(x,φ(x)), where Y denotes an arbitrary metric space.
DOI : 10.4064/ap-60-3-231-239
Keywords: functional equation, functional inequality, periodic point, cycle

Bolesław Gaweł 1

1
@article{10_4064_ap_60_3_231_239,
     author = {Boles{\l}aw Gawe{\l}},
     title = {On the uniqueness of continuous solutions of functional equations},
     journal = {Annales Polonici Mathematici},
     pages = {231--239},
     publisher = {mathdoc},
     volume = {60},
     number = {3},
     year = {1994},
     doi = {10.4064/ap-60-3-231-239},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-60-3-231-239/}
}
TY  - JOUR
AU  - Bolesław Gaweł
TI  - On the uniqueness of continuous solutions of functional equations
JO  - Annales Polonici Mathematici
PY  - 1994
SP  - 231
EP  - 239
VL  - 60
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-60-3-231-239/
DO  - 10.4064/ap-60-3-231-239
LA  - en
ID  - 10_4064_ap_60_3_231_239
ER  - 
%0 Journal Article
%A Bolesław Gaweł
%T On the uniqueness of continuous solutions of functional equations
%J Annales Polonici Mathematici
%D 1994
%P 231-239
%V 60
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-60-3-231-239/
%R 10.4064/ap-60-3-231-239
%G en
%F 10_4064_ap_60_3_231_239
Bolesław Gaweł. On the uniqueness of continuous solutions of functional equations. Annales Polonici Mathematici, Tome 60 (1994) no. 3, pp. 231-239. doi : 10.4064/ap-60-3-231-239. http://geodesic.mathdoc.fr/articles/10.4064/ap-60-3-231-239/

Cité par Sources :