Convex-like inequality, homogeneity, subadditivity, and a characterization of $L^p$-norm
Annales Polonici Mathematici, Tome 60 (1994) no. 3, pp. 221-230
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let a and b be fixed real numbers such that 0 min{a,b} 1 a + b. We prove that every function f:(0,∞) → ℝ satisfying f(as + bt) ≤ af(s) + bf(t), s,t > 0, and such that $limsup_{t → 0+} f(t) ≤ 0$ must be of the form f(t) = f(1)t, t > 0. This improves an earlier result in [5] where, in particular, f is assumed to be nonnegative. Some generalizations for functions defined on cones in linear spaces are given. We apply these results to give a new characterization of the $L^p$-norm.
Keywords:
functional inequality, subadditive functions, homogeneous functions, Banach functionals, convex functions, linear space, cones, measure space, integrable step functions, $L^p$-norm, Minkowski's inequality
Affiliations des auteurs :
Janusz Matkowski 1 ; Marek Pycia 1
@article{10_4064_ap_60_3_221_230,
author = {Janusz Matkowski and Marek Pycia},
title = {Convex-like inequality, homogeneity, subadditivity, and a characterization of $L^p$-norm},
journal = {Annales Polonici Mathematici},
pages = {221--230},
publisher = {mathdoc},
volume = {60},
number = {3},
year = {1994},
doi = {10.4064/ap-60-3-221-230},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-60-3-221-230/}
}
TY - JOUR AU - Janusz Matkowski AU - Marek Pycia TI - Convex-like inequality, homogeneity, subadditivity, and a characterization of $L^p$-norm JO - Annales Polonici Mathematici PY - 1994 SP - 221 EP - 230 VL - 60 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-60-3-221-230/ DO - 10.4064/ap-60-3-221-230 LA - en ID - 10_4064_ap_60_3_221_230 ER -
%0 Journal Article %A Janusz Matkowski %A Marek Pycia %T Convex-like inequality, homogeneity, subadditivity, and a characterization of $L^p$-norm %J Annales Polonici Mathematici %D 1994 %P 221-230 %V 60 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap-60-3-221-230/ %R 10.4064/ap-60-3-221-230 %G en %F 10_4064_ap_60_3_221_230
Janusz Matkowski; Marek Pycia. Convex-like inequality, homogeneity, subadditivity, and a characterization of $L^p$-norm. Annales Polonici Mathematici, Tome 60 (1994) no. 3, pp. 221-230. doi: 10.4064/ap-60-3-221-230
Cité par Sources :