Convex-like inequality, homogeneity, subadditivity, and a characterization of $L^p$-norm
Annales Polonici Mathematici, Tome 60 (1994) no. 3, pp. 221-230.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let a and b be fixed real numbers such that 0 min{a,b} 1 a + b. We prove that every function f:(0,∞) → ℝ satisfying f(as + bt) ≤ af(s) + bf(t), s,t > 0, and such that $limsup_{t → 0+} f(t) ≤ 0$ must be of the form f(t) = f(1)t, t > 0. This improves an earlier result in [5] where, in particular, f is assumed to be nonnegative. Some generalizations for functions defined on cones in linear spaces are given. We apply these results to give a new characterization of the $L^p$-norm.
DOI : 10.4064/ap-60-3-221-230
Keywords: functional inequality, subadditive functions, homogeneous functions, Banach functionals, convex functions, linear space, cones, measure space, integrable step functions, $L^p$-norm, Minkowski's inequality

Janusz Matkowski 1 ; Marek Pycia 1

1
@article{10_4064_ap_60_3_221_230,
     author = {Janusz Matkowski and Marek Pycia},
     title = {Convex-like inequality, homogeneity, subadditivity, and a characterization of $L^p$-norm},
     journal = {Annales Polonici Mathematici},
     pages = {221--230},
     publisher = {mathdoc},
     volume = {60},
     number = {3},
     year = {1994},
     doi = {10.4064/ap-60-3-221-230},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-60-3-221-230/}
}
TY  - JOUR
AU  - Janusz Matkowski
AU  - Marek Pycia
TI  - Convex-like inequality, homogeneity, subadditivity, and a characterization of $L^p$-norm
JO  - Annales Polonici Mathematici
PY  - 1994
SP  - 221
EP  - 230
VL  - 60
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-60-3-221-230/
DO  - 10.4064/ap-60-3-221-230
LA  - en
ID  - 10_4064_ap_60_3_221_230
ER  - 
%0 Journal Article
%A Janusz Matkowski
%A Marek Pycia
%T Convex-like inequality, homogeneity, subadditivity, and a characterization of $L^p$-norm
%J Annales Polonici Mathematici
%D 1994
%P 221-230
%V 60
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-60-3-221-230/
%R 10.4064/ap-60-3-221-230
%G en
%F 10_4064_ap_60_3_221_230
Janusz Matkowski; Marek Pycia. Convex-like inequality, homogeneity, subadditivity, and a characterization of $L^p$-norm. Annales Polonici Mathematici, Tome 60 (1994) no. 3, pp. 221-230. doi : 10.4064/ap-60-3-221-230. http://geodesic.mathdoc.fr/articles/10.4064/ap-60-3-221-230/

Cité par Sources :