The automorphism groups of Zariski open affine subsets of the affine plane
Annales Polonici Mathematici, Tome 60 (1994) no. 2, pp. 163-171.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study some properties of the affine plane. First we describe the set of fixed points of a polynomial automorphism of ℂ². Next we classify completely so-called identity sets for polynomial automorphisms of ℂ². Finally, we show that a sufficiently general Zariski open affine subset of the affine plane has a finite group of automorphisms.
DOI : 10.4064/ap-60-2-163-171
Keywords: polynomial automorphisms, the set of fixed points of a polynomial automorphism, the affine plane

Zbigniew Jelonek 1

1
@article{10_4064_ap_60_2_163_171,
     author = {Zbigniew Jelonek},
     title = {The automorphism groups of {Zariski} open affine subsets of the affine plane},
     journal = {Annales Polonici Mathematici},
     pages = {163--171},
     publisher = {mathdoc},
     volume = {60},
     number = {2},
     year = {1994},
     doi = {10.4064/ap-60-2-163-171},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-60-2-163-171/}
}
TY  - JOUR
AU  - Zbigniew Jelonek
TI  - The automorphism groups of Zariski open affine subsets of the affine plane
JO  - Annales Polonici Mathematici
PY  - 1994
SP  - 163
EP  - 171
VL  - 60
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-60-2-163-171/
DO  - 10.4064/ap-60-2-163-171
LA  - en
ID  - 10_4064_ap_60_2_163_171
ER  - 
%0 Journal Article
%A Zbigniew Jelonek
%T The automorphism groups of Zariski open affine subsets of the affine plane
%J Annales Polonici Mathematici
%D 1994
%P 163-171
%V 60
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-60-2-163-171/
%R 10.4064/ap-60-2-163-171
%G en
%F 10_4064_ap_60_2_163_171
Zbigniew Jelonek. The automorphism groups of Zariski open affine subsets of the affine plane. Annales Polonici Mathematici, Tome 60 (1994) no. 2, pp. 163-171. doi : 10.4064/ap-60-2-163-171. http://geodesic.mathdoc.fr/articles/10.4064/ap-60-2-163-171/

Cité par Sources :