Commuting functions and simultaneous Abel equations
Annales Polonici Mathematici, Tome 60 (1994) no. 2, pp. 119-135
The system of Abel equations α(f_t(x)) = α(x) + λ(t), t ∈ T, is studied under the general assumption that $f_t$ are pairwise commuting homeomorphisms of a real interval and have no fixed points (T is an arbitrary non-empty set). A result concerning embeddability of rational iteration groups in continuous groups is proved as a simple consequence of the obtained theorems.
@article{10_4064_ap_60_2_119_135,
author = {W. Jarczyk and K. {\L}oskot and M. Zdun},
title = {Commuting functions and simultaneous {Abel} equations},
journal = {Annales Polonici Mathematici},
pages = {119--135},
year = {1994},
volume = {60},
number = {2},
doi = {10.4064/ap-60-2-119-135},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-60-2-119-135/}
}
TY - JOUR AU - W. Jarczyk AU - K. Łoskot AU - M. Zdun TI - Commuting functions and simultaneous Abel equations JO - Annales Polonici Mathematici PY - 1994 SP - 119 EP - 135 VL - 60 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-60-2-119-135/ DO - 10.4064/ap-60-2-119-135 LA - en ID - 10_4064_ap_60_2_119_135 ER -
W. Jarczyk; K. Łoskot; M. Zdun. Commuting functions and simultaneous Abel equations. Annales Polonici Mathematici, Tome 60 (1994) no. 2, pp. 119-135. doi: 10.4064/ap-60-2-119-135
Cité par Sources :