Commuting functions and simultaneous Abel equations
Annales Polonici Mathematici, Tome 60 (1994) no. 2, pp. 119-135.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The system of Abel equations α(f_t(x)) = α(x) + λ(t), t ∈ T, is studied under the general assumption that $f_t$ are pairwise commuting homeomorphisms of a real interval and have no fixed points (T is an arbitrary non-empty set). A result concerning embeddability of rational iteration groups in continuous groups is proved as a simple consequence of the obtained theorems.
DOI : 10.4064/ap-60-2-119-135
Keywords: Abel equation, commuting functions, iteration group

W. Jarczyk 1 ; K. Łoskot 1 ; M. Zdun 1

1
@article{10_4064_ap_60_2_119_135,
     author = {W. Jarczyk and K. {\L}oskot and M. Zdun},
     title = {Commuting functions and simultaneous {Abel} equations},
     journal = {Annales Polonici Mathematici},
     pages = {119--135},
     publisher = {mathdoc},
     volume = {60},
     number = {2},
     year = {1994},
     doi = {10.4064/ap-60-2-119-135},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-60-2-119-135/}
}
TY  - JOUR
AU  - W. Jarczyk
AU  - K. Łoskot
AU  - M. Zdun
TI  - Commuting functions and simultaneous Abel equations
JO  - Annales Polonici Mathematici
PY  - 1994
SP  - 119
EP  - 135
VL  - 60
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-60-2-119-135/
DO  - 10.4064/ap-60-2-119-135
LA  - en
ID  - 10_4064_ap_60_2_119_135
ER  - 
%0 Journal Article
%A W. Jarczyk
%A K. Łoskot
%A M. Zdun
%T Commuting functions and simultaneous Abel equations
%J Annales Polonici Mathematici
%D 1994
%P 119-135
%V 60
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-60-2-119-135/
%R 10.4064/ap-60-2-119-135
%G en
%F 10_4064_ap_60_2_119_135
W. Jarczyk; K. Łoskot; M. Zdun. Commuting functions and simultaneous Abel equations. Annales Polonici Mathematici, Tome 60 (1994) no. 2, pp. 119-135. doi : 10.4064/ap-60-2-119-135. http://geodesic.mathdoc.fr/articles/10.4064/ap-60-2-119-135/

Cité par Sources :