Derivative and antiderivative operators and the size of complex domains
Annales Polonici Mathematici, Tome 59 (1994) no. 3, pp. 267-274
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove some conditions on a complex sequence for the existence of universal functions with respect to sequences of certain derivative and antiderivative operators related to it. These operators are defined on the space of holomorphic functions in a complex domain. Conditions for the equicontinuity of those sequences are also studied. The conditions depend upon the size of the domain.
Keywords:
universal function, equicontinuous sequence, derivative operator, antiderivative operator, MacLane's theorem, size of a domain
Affiliations des auteurs :
Luis Bernal-González 1
@article{10_4064_ap_59_3_267_274,
author = {Luis Bernal-Gonz\'alez},
title = {Derivative and antiderivative operators and the size of complex domains},
journal = {Annales Polonici Mathematici},
pages = {267--274},
publisher = {mathdoc},
volume = {59},
number = {3},
year = {1994},
doi = {10.4064/ap-59-3-267-274},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-59-3-267-274/}
}
TY - JOUR AU - Luis Bernal-González TI - Derivative and antiderivative operators and the size of complex domains JO - Annales Polonici Mathematici PY - 1994 SP - 267 EP - 274 VL - 59 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-59-3-267-274/ DO - 10.4064/ap-59-3-267-274 LA - en ID - 10_4064_ap_59_3_267_274 ER -
%0 Journal Article %A Luis Bernal-González %T Derivative and antiderivative operators and the size of complex domains %J Annales Polonici Mathematici %D 1994 %P 267-274 %V 59 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap-59-3-267-274/ %R 10.4064/ap-59-3-267-274 %G en %F 10_4064_ap_59_3_267_274
Luis Bernal-González. Derivative and antiderivative operators and the size of complex domains. Annales Polonici Mathematici, Tome 59 (1994) no. 3, pp. 267-274. doi: 10.4064/ap-59-3-267-274
Cité par Sources :