Analytic cell decomposition of sets definable in the structure $ℝ_{exp}$
Annales Polonici Mathematici, Tome 59 (1994) no. 3, pp. 255-266
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove that every set definable in the structure $ℝ_{exp}$ can be decomposed into finitely many connected analytic manifolds each of which is also definable in this structure.
@article{10_4064_ap_59_3_255_266,
author = {Ta Loi},
title = {Analytic cell decomposition of sets definable in the structure $\ensuremath{\mathbb{R}}_{exp}$},
journal = {Annales Polonici Mathematici},
pages = {255--266},
year = {1994},
volume = {59},
number = {3},
doi = {10.4064/ap-59-3-255-266},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-59-3-255-266/}
}
TY - JOUR
AU - Ta Loi
TI - Analytic cell decomposition of sets definable in the structure $ℝ_{exp}$
JO - Annales Polonici Mathematici
PY - 1994
SP - 255
EP - 266
VL - 59
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-59-3-255-266/
DO - 10.4064/ap-59-3-255-266
LA - en
ID - 10_4064_ap_59_3_255_266
ER -
Ta Loi. Analytic cell decomposition of sets definable in the structure $ℝ_{exp}$. Annales Polonici Mathematici, Tome 59 (1994) no. 3, pp. 255-266. doi: 10.4064/ap-59-3-255-266
Cité par Sources :