On the uniqueness of viscosity solutions for first order partial differential-functional equations
Annales Polonici Mathematici, Tome 59 (1994) no. 1, pp. 65-75.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider viscosity solutions for first order differential-functional equations. Uniqueness theorems for initial, mixed, and boundary value problems are presented. Our theorems include some results for generalized ("almost everywhere") solutions.
DOI : 10.4064/ap-59-1-65-75
Keywords: uniqueness, viscosity solution, differential-functional equation, almost everywhere solution

Krzysztof Topolski 1

1
@article{10_4064_ap_59_1_65_75,
     author = {Krzysztof Topolski},
     title = {On the uniqueness of viscosity solutions for first order partial differential-functional equations},
     journal = {Annales Polonici Mathematici},
     pages = {65--75},
     publisher = {mathdoc},
     volume = {59},
     number = {1},
     year = {1994},
     doi = {10.4064/ap-59-1-65-75},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-59-1-65-75/}
}
TY  - JOUR
AU  - Krzysztof Topolski
TI  - On the uniqueness of viscosity solutions for first order partial differential-functional equations
JO  - Annales Polonici Mathematici
PY  - 1994
SP  - 65
EP  - 75
VL  - 59
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-59-1-65-75/
DO  - 10.4064/ap-59-1-65-75
LA  - en
ID  - 10_4064_ap_59_1_65_75
ER  - 
%0 Journal Article
%A Krzysztof Topolski
%T On the uniqueness of viscosity solutions for first order partial differential-functional equations
%J Annales Polonici Mathematici
%D 1994
%P 65-75
%V 59
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-59-1-65-75/
%R 10.4064/ap-59-1-65-75
%G en
%F 10_4064_ap_59_1_65_75
Krzysztof Topolski. On the uniqueness of viscosity solutions for first order partial differential-functional equations. Annales Polonici Mathematici, Tome 59 (1994) no. 1, pp. 65-75. doi : 10.4064/ap-59-1-65-75. http://geodesic.mathdoc.fr/articles/10.4064/ap-59-1-65-75/

Cité par Sources :