On the structure of the set of solutions of a Volterra integral equation in a Banach space
Annales Polonici Mathematici, Tome 59 (1994) no. 1, pp. 33-39
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The set of solutions of a Volterra equation in a Banach space with a Carathéodory kernel is proved to be an $ℛ_δ$, in particular compact and connected. The kernel is not assumed to be uniformly continuous with respect to the unknown function and the characterization is given in terms of a B₀-space of continuous functions on a noncompact domain.
Keywords:
Volterra integral equation in a Banach space, $ℛ_δ$-sets
Affiliations des auteurs :
Krzysztof Czarnowski 1
@article{10_4064_ap_59_1_33_39,
author = {Krzysztof Czarnowski},
title = {On the structure of the set of solutions of a {Volterra} integral equation in a {Banach} space},
journal = {Annales Polonici Mathematici},
pages = {33--39},
publisher = {mathdoc},
volume = {59},
number = {1},
year = {1994},
doi = {10.4064/ap-59-1-33-39},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-59-1-33-39/}
}
TY - JOUR AU - Krzysztof Czarnowski TI - On the structure of the set of solutions of a Volterra integral equation in a Banach space JO - Annales Polonici Mathematici PY - 1994 SP - 33 EP - 39 VL - 59 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-59-1-33-39/ DO - 10.4064/ap-59-1-33-39 LA - en ID - 10_4064_ap_59_1_33_39 ER -
%0 Journal Article %A Krzysztof Czarnowski %T On the structure of the set of solutions of a Volterra integral equation in a Banach space %J Annales Polonici Mathematici %D 1994 %P 33-39 %V 59 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap-59-1-33-39/ %R 10.4064/ap-59-1-33-39 %G en %F 10_4064_ap_59_1_33_39
Krzysztof Czarnowski. On the structure of the set of solutions of a Volterra integral equation in a Banach space. Annales Polonici Mathematici, Tome 59 (1994) no. 1, pp. 33-39. doi: 10.4064/ap-59-1-33-39
Cité par Sources :