On the structure of the set of solutions of a Volterra integral equation in a Banach space
Annales Polonici Mathematici, Tome 59 (1994) no. 1, pp. 33-39.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The set of solutions of a Volterra equation in a Banach space with a Carathéodory kernel is proved to be an $ℛ_δ$, in particular compact and connected. The kernel is not assumed to be uniformly continuous with respect to the unknown function and the characterization is given in terms of a B₀-space of continuous functions on a noncompact domain.
DOI : 10.4064/ap-59-1-33-39
Keywords: Volterra integral equation in a Banach space, $ℛ_δ$-sets

Krzysztof Czarnowski 1

1
@article{10_4064_ap_59_1_33_39,
     author = {Krzysztof Czarnowski},
     title = {On the structure of the set of solutions of a {Volterra} integral equation in a {Banach} space},
     journal = {Annales Polonici Mathematici},
     pages = {33--39},
     publisher = {mathdoc},
     volume = {59},
     number = {1},
     year = {1994},
     doi = {10.4064/ap-59-1-33-39},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-59-1-33-39/}
}
TY  - JOUR
AU  - Krzysztof Czarnowski
TI  - On the structure of the set of solutions of a Volterra integral equation in a Banach space
JO  - Annales Polonici Mathematici
PY  - 1994
SP  - 33
EP  - 39
VL  - 59
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-59-1-33-39/
DO  - 10.4064/ap-59-1-33-39
LA  - en
ID  - 10_4064_ap_59_1_33_39
ER  - 
%0 Journal Article
%A Krzysztof Czarnowski
%T On the structure of the set of solutions of a Volterra integral equation in a Banach space
%J Annales Polonici Mathematici
%D 1994
%P 33-39
%V 59
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-59-1-33-39/
%R 10.4064/ap-59-1-33-39
%G en
%F 10_4064_ap_59_1_33_39
Krzysztof Czarnowski. On the structure of the set of solutions of a Volterra integral equation in a Banach space. Annales Polonici Mathematici, Tome 59 (1994) no. 1, pp. 33-39. doi : 10.4064/ap-59-1-33-39. http://geodesic.mathdoc.fr/articles/10.4064/ap-59-1-33-39/

Cité par Sources :