Uniformly convex functions II
Annales Polonici Mathematici, Tome 58 (1993) no. 3, pp. 275-285.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Recently, A. W. Goodman introduced the class UCV of normalized uniformly convex functions. We present some sharp coefficient bounds for functions f(z) = z + a₂z² + a₃z³ + ... ∈ UCV and their inverses $f^{-1}(w) = w + d₂w² + d₃w³ + ...$. The series expansion for $f^{-1}(w)$ converges when $|w| ϱ_f$, where $0 ϱ_f$ depends on f. The sharp bounds on $|a_n|$ and all extremal functions were known for n = 2 and 3; the extremal functions consist of a certain function k ∈ UCV and its rotations. We obtain the sharp bounds on $|a_n|$ and all extremal functions for n = 4, 5, and 6. The same function k and its rotations remain the only extremals. It is known that k and its rotations cannot provide the sharp bound on $|a_n|$ for n sufficiently large. We also find the sharp estimate on the functional |μa²₂ - a₃| for -∞ μ ∞. We give sharp bounds on $|d_n|$ for n = 2, 3 and 4. For $n = 2, k^{-1}$ and its rotations are the only extremals. There are different extremal functions for both n = 3 and n = 4. Finally, we show that k and its rotations provide the sharp upper bound on |f''(z)| over the class UCV.
DOI : 10.4064/ap-58-3-275-285
Keywords: convex functions, coefficient bounds

Wancang Ma 1 ; David Minda 1

1
@article{10_4064_ap_58_3_275_285,
     author = {Wancang Ma and David Minda},
     title = {Uniformly convex functions {II}},
     journal = {Annales Polonici Mathematici},
     pages = {275--285},
     publisher = {mathdoc},
     volume = {58},
     number = {3},
     year = {1993},
     doi = {10.4064/ap-58-3-275-285},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-58-3-275-285/}
}
TY  - JOUR
AU  - Wancang Ma
AU  - David Minda
TI  - Uniformly convex functions II
JO  - Annales Polonici Mathematici
PY  - 1993
SP  - 275
EP  - 285
VL  - 58
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-58-3-275-285/
DO  - 10.4064/ap-58-3-275-285
LA  - en
ID  - 10_4064_ap_58_3_275_285
ER  - 
%0 Journal Article
%A Wancang Ma
%A David Minda
%T Uniformly convex functions II
%J Annales Polonici Mathematici
%D 1993
%P 275-285
%V 58
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-58-3-275-285/
%R 10.4064/ap-58-3-275-285
%G en
%F 10_4064_ap_58_3_275_285
Wancang Ma; David Minda. Uniformly convex functions II. Annales Polonici Mathematici, Tome 58 (1993) no. 3, pp. 275-285. doi : 10.4064/ap-58-3-275-285. http://geodesic.mathdoc.fr/articles/10.4064/ap-58-3-275-285/

Cité par Sources :