The set of points at which a polynomial map is not proper
Annales Polonici Mathematici, Tome 58 (1993) no. 3, pp. 259-266
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We describe the set of points over which a dominant polynomial map $f=(f_1,...,f_n) : ℂ^n → ℂ^n$ is not a local analytic covering. We show that this set is either empty or it is a uniruled hypersurface of degree bounded by $(∏_{i=1}^n deg f_i - μ (f)) / (min_{i=1,...,n} deg f_i)$.
Keywords:
polynomial mappings, proper mappings, dominant mappings, analytic covering
Affiliations des auteurs :
Zbigniew Jelonek 1
@article{10_4064_ap_58_3_259_266,
author = {Zbigniew Jelonek},
title = {The set of points at which a polynomial map is not proper},
journal = {Annales Polonici Mathematici},
pages = {259--266},
publisher = {mathdoc},
volume = {58},
number = {3},
year = {1993},
doi = {10.4064/ap-58-3-259-266},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-58-3-259-266/}
}
TY - JOUR AU - Zbigniew Jelonek TI - The set of points at which a polynomial map is not proper JO - Annales Polonici Mathematici PY - 1993 SP - 259 EP - 266 VL - 58 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-58-3-259-266/ DO - 10.4064/ap-58-3-259-266 LA - en ID - 10_4064_ap_58_3_259_266 ER -
Zbigniew Jelonek. The set of points at which a polynomial map is not proper. Annales Polonici Mathematici, Tome 58 (1993) no. 3, pp. 259-266. doi: 10.4064/ap-58-3-259-266
Cité par Sources :