The set of points at which a polynomial map is not proper
Annales Polonici Mathematici, Tome 58 (1993) no. 3, pp. 259-266.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We describe the set of points over which a dominant polynomial map $f=(f_1,...,f_n) : ℂ^n → ℂ^n$ is not a local analytic covering. We show that this set is either empty or it is a uniruled hypersurface of degree bounded by $(∏_{i=1}^n deg f_i - μ (f)) / (min_{i=1,...,n} deg f_i)$.
DOI : 10.4064/ap-58-3-259-266
Keywords: polynomial mappings, proper mappings, dominant mappings, analytic covering

Zbigniew Jelonek 1

1
@article{10_4064_ap_58_3_259_266,
     author = {Zbigniew Jelonek},
     title = {The set of points at which a polynomial map is not proper},
     journal = {Annales Polonici Mathematici},
     pages = {259--266},
     publisher = {mathdoc},
     volume = {58},
     number = {3},
     year = {1993},
     doi = {10.4064/ap-58-3-259-266},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-58-3-259-266/}
}
TY  - JOUR
AU  - Zbigniew Jelonek
TI  - The set of points at which a polynomial map is not proper
JO  - Annales Polonici Mathematici
PY  - 1993
SP  - 259
EP  - 266
VL  - 58
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-58-3-259-266/
DO  - 10.4064/ap-58-3-259-266
LA  - en
ID  - 10_4064_ap_58_3_259_266
ER  - 
%0 Journal Article
%A Zbigniew Jelonek
%T The set of points at which a polynomial map is not proper
%J Annales Polonici Mathematici
%D 1993
%P 259-266
%V 58
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-58-3-259-266/
%R 10.4064/ap-58-3-259-266
%G en
%F 10_4064_ap_58_3_259_266
Zbigniew Jelonek. The set of points at which a polynomial map is not proper. Annales Polonici Mathematici, Tome 58 (1993) no. 3, pp. 259-266. doi : 10.4064/ap-58-3-259-266. http://geodesic.mathdoc.fr/articles/10.4064/ap-58-3-259-266/

Cité par Sources :