On the spectrum of A(Ω) and $H^∞(Ω)$
Annales Polonici Mathematici, Tome 58 (1993) no. 2, pp. 193-199.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study some properties of the maximal ideal space of the bounded holomorphic functions in several variables. Two examples of bounded balanced domains are introduced, both having non-trivial maximal ideals.
DOI : 10.4064/ap-58-2-193-199
Keywords: bounded analytic function, spectrum, Gleason problem, balanced domain

Urban Cegrell 1

1
@article{10_4064_ap_58_2_193_199,
     author = {Urban Cegrell},
     title = {On the spectrum of {A(\ensuremath{\Omega})} and $H^\ensuremath{\infty}(\ensuremath{\Omega})$},
     journal = {Annales Polonici Mathematici},
     pages = {193--199},
     publisher = {mathdoc},
     volume = {58},
     number = {2},
     year = {1993},
     doi = {10.4064/ap-58-2-193-199},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-58-2-193-199/}
}
TY  - JOUR
AU  - Urban Cegrell
TI  - On the spectrum of A(Ω) and $H^∞(Ω)$
JO  - Annales Polonici Mathematici
PY  - 1993
SP  - 193
EP  - 199
VL  - 58
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-58-2-193-199/
DO  - 10.4064/ap-58-2-193-199
LA  - en
ID  - 10_4064_ap_58_2_193_199
ER  - 
%0 Journal Article
%A Urban Cegrell
%T On the spectrum of A(Ω) and $H^∞(Ω)$
%J Annales Polonici Mathematici
%D 1993
%P 193-199
%V 58
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-58-2-193-199/
%R 10.4064/ap-58-2-193-199
%G en
%F 10_4064_ap_58_2_193_199
Urban Cegrell. On the spectrum of A(Ω) and $H^∞(Ω)$. Annales Polonici Mathematici, Tome 58 (1993) no. 2, pp. 193-199. doi : 10.4064/ap-58-2-193-199. http://geodesic.mathdoc.fr/articles/10.4064/ap-58-2-193-199/

Cité par Sources :