Asymptotic properties of Markov operators defined by Volterra type integrals
Annales Polonici Mathematici, Tome 58 (1993) no. 2, pp. 161-175.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

New sufficient conditions for asymptotic stability of Markov operators are given. These criteria are applied to a class of Volterra type integral operators with advanced argument.
DOI : 10.4064/ap-58-2-161-175
Keywords: Markov operator, integral Markov operator, stationary density, asymptotic stability, sweeping

Karol Baron 1 ; Andrzej Lasota 1

1
@article{10_4064_ap_58_2_161_175,
     author = {Karol Baron and Andrzej Lasota},
     title = {Asymptotic properties of {Markov} operators defined by {Volterra} type integrals},
     journal = {Annales Polonici Mathematici},
     pages = {161--175},
     publisher = {mathdoc},
     volume = {58},
     number = {2},
     year = {1993},
     doi = {10.4064/ap-58-2-161-175},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-58-2-161-175/}
}
TY  - JOUR
AU  - Karol Baron
AU  - Andrzej Lasota
TI  - Asymptotic properties of Markov operators defined by Volterra type integrals
JO  - Annales Polonici Mathematici
PY  - 1993
SP  - 161
EP  - 175
VL  - 58
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-58-2-161-175/
DO  - 10.4064/ap-58-2-161-175
LA  - en
ID  - 10_4064_ap_58_2_161_175
ER  - 
%0 Journal Article
%A Karol Baron
%A Andrzej Lasota
%T Asymptotic properties of Markov operators defined by Volterra type integrals
%J Annales Polonici Mathematici
%D 1993
%P 161-175
%V 58
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-58-2-161-175/
%R 10.4064/ap-58-2-161-175
%G en
%F 10_4064_ap_58_2_161_175
Karol Baron; Andrzej Lasota. Asymptotic properties of Markov operators defined by Volterra type integrals. Annales Polonici Mathematici, Tome 58 (1993) no. 2, pp. 161-175. doi : 10.4064/ap-58-2-161-175. http://geodesic.mathdoc.fr/articles/10.4064/ap-58-2-161-175/

Cité par Sources :