Existence of solution of the nonlinear Dirichlet problem for differential-functional equations of elliptic type
Annales Polonici Mathematici, Tome 58 (1993) no. 2, pp. 139-146.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Consider a nonlinear differential-functional equation (1) Au + f(x,u(x),u) = 0 where $Au := ∑_{i,j=1}^m a_{ij}(x) (∂²u)/(∂x_i ∂x_j)$, $x=(x_1,...,x_m) ∈ G ⊂ ℝ^m$, G is a bounded domain with $C^{2+α}$ (0 α 1) boundary, the operator A is strongly uniformly elliptic in G and u is a real $L^p(G̅)$ function. For the equation (1) we consider the Dirichlet problem with the boundary condition (2) u(x) = h(x) for x∈ ∂G. We use Chaplygin's method [5] to prove that problem (1), (2) has at least one regular solution in a suitable class of functions. Using the method of upper and lower functions, coupled with the monotone iterative technique, H. Amman [3], D. H. Sattinger [13] (see also O. Diekmann and N. M. Temme [6], G. S. Ladde, V. Lakshmikantham, A. S. Vatsala [8], J. Smoller [15]) and I. P. Mysovskikh [11] obtained similar results for nonlinear differential equations of elliptic type. A special case of (1) is the integro-differential equation $Au + f(x,u(x), ∫_G u(x)dx) = 0$. Interesting results about existence and uniqueness of solutions for this equation were obtained by H. Ugowski [17].
DOI : 10.4064/ap-58-2-139-146
Keywords: nonlinear differential-functional equations of elliptic type, monotone iterative technique, Chaplygin's method, Dirichlet problem

Stanisław Brzychczy 1

1
@article{10_4064_ap_58_2_139_146,
     author = {Stanis{\l}aw Brzychczy},
     title = {Existence of solution of the nonlinear {Dirichlet} problem for differential-functional equations of elliptic type},
     journal = {Annales Polonici Mathematici},
     pages = {139--146},
     publisher = {mathdoc},
     volume = {58},
     number = {2},
     year = {1993},
     doi = {10.4064/ap-58-2-139-146},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-58-2-139-146/}
}
TY  - JOUR
AU  - Stanisław Brzychczy
TI  - Existence of solution of the nonlinear Dirichlet problem for differential-functional equations of elliptic type
JO  - Annales Polonici Mathematici
PY  - 1993
SP  - 139
EP  - 146
VL  - 58
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-58-2-139-146/
DO  - 10.4064/ap-58-2-139-146
LA  - en
ID  - 10_4064_ap_58_2_139_146
ER  - 
%0 Journal Article
%A Stanisław Brzychczy
%T Existence of solution of the nonlinear Dirichlet problem for differential-functional equations of elliptic type
%J Annales Polonici Mathematici
%D 1993
%P 139-146
%V 58
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-58-2-139-146/
%R 10.4064/ap-58-2-139-146
%G en
%F 10_4064_ap_58_2_139_146
Stanisław Brzychczy. Existence of solution of the nonlinear Dirichlet problem for differential-functional equations of elliptic type. Annales Polonici Mathematici, Tome 58 (1993) no. 2, pp. 139-146. doi : 10.4064/ap-58-2-139-146. http://geodesic.mathdoc.fr/articles/10.4064/ap-58-2-139-146/

Cité par Sources :