Existence of solution of the nonlinear Dirichlet problem for differential-functional equations of elliptic type
Annales Polonici Mathematici, Tome 58 (1993) no. 2, pp. 139-146
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Consider a nonlinear differential-functional equation (1) Au + f(x,u(x),u) = 0 where $Au := ∑_{i,j=1}^m a_{ij}(x) (∂²u)/(∂x_i ∂x_j)$, $x=(x_1,...,x_m) ∈ G ⊂ ℝ^m$, G is a bounded domain with $C^{2+α}$ (0 α 1) boundary, the operator A is strongly uniformly elliptic in G and u is a real $L^p(G̅)$ function. For the equation (1) we consider the Dirichlet problem with the boundary condition (2) u(x) = h(x) for x∈ ∂G. We use Chaplygin's method [5] to prove that problem (1), (2) has at least one regular solution in a suitable class of functions. Using the method of upper and lower functions, coupled with the monotone iterative technique, H. Amman [3], D. H. Sattinger [13] (see also O. Diekmann and N. M. Temme [6], G. S. Ladde, V. Lakshmikantham, A. S. Vatsala [8], J. Smoller [15]) and I. P. Mysovskikh [11] obtained similar results for nonlinear differential equations of elliptic type. A special case of (1) is the integro-differential equation $Au + f(x,u(x), ∫_G u(x)dx) = 0$. Interesting results about existence and uniqueness of solutions for this equation were obtained by H. Ugowski [17].
Keywords:
nonlinear differential-functional equations of elliptic type, monotone iterative technique, Chaplygin's method, Dirichlet problem
Affiliations des auteurs :
Stanisław Brzychczy 1
@article{10_4064_ap_58_2_139_146,
author = {Stanis{\l}aw Brzychczy},
title = {Existence of solution of the nonlinear {Dirichlet} problem for differential-functional equations of elliptic type},
journal = {Annales Polonici Mathematici},
pages = {139--146},
publisher = {mathdoc},
volume = {58},
number = {2},
year = {1993},
doi = {10.4064/ap-58-2-139-146},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-58-2-139-146/}
}
TY - JOUR AU - Stanisław Brzychczy TI - Existence of solution of the nonlinear Dirichlet problem for differential-functional equations of elliptic type JO - Annales Polonici Mathematici PY - 1993 SP - 139 EP - 146 VL - 58 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-58-2-139-146/ DO - 10.4064/ap-58-2-139-146 LA - en ID - 10_4064_ap_58_2_139_146 ER -
%0 Journal Article %A Stanisław Brzychczy %T Existence of solution of the nonlinear Dirichlet problem for differential-functional equations of elliptic type %J Annales Polonici Mathematici %D 1993 %P 139-146 %V 58 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap-58-2-139-146/ %R 10.4064/ap-58-2-139-146 %G en %F 10_4064_ap_58_2_139_146
Stanisław Brzychczy. Existence of solution of the nonlinear Dirichlet problem for differential-functional equations of elliptic type. Annales Polonici Mathematici, Tome 58 (1993) no. 2, pp. 139-146. doi: 10.4064/ap-58-2-139-146
Cité par Sources :