On Lie algebras of vector fields related to Riemannian foliations
Annales Polonici Mathematici, Tome 58 (1993) no. 2, pp. 111-122
Riemannian foliations constitute an important type of foliated structures. In this note we prove two theorems connecting the algebraic structure of Lie algebras of foliated vector fields with the smooth structure of a Riemannian foliation.
Keywords:
Riemannian foliation, Lie algebra, ideal, isomorphism, vector field, generalized manifold, stratification
@article{10_4064_ap_58_2_111_122,
author = {Tomasz Rybicki},
title = {On {Lie} algebras of vector fields related to {Riemannian} foliations},
journal = {Annales Polonici Mathematici},
pages = {111--122},
year = {1993},
volume = {58},
number = {2},
doi = {10.4064/ap-58-2-111-122},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-58-2-111-122/}
}
TY - JOUR AU - Tomasz Rybicki TI - On Lie algebras of vector fields related to Riemannian foliations JO - Annales Polonici Mathematici PY - 1993 SP - 111 EP - 122 VL - 58 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-58-2-111-122/ DO - 10.4064/ap-58-2-111-122 LA - en ID - 10_4064_ap_58_2_111_122 ER -
Tomasz Rybicki. On Lie algebras of vector fields related to Riemannian foliations. Annales Polonici Mathematici, Tome 58 (1993) no. 2, pp. 111-122. doi: 10.4064/ap-58-2-111-122
Cité par Sources :