On Lie algebras of vector fields related to Riemannian foliations
Annales Polonici Mathematici, Tome 58 (1993) no. 2, pp. 111-122.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Riemannian foliations constitute an important type of foliated structures. In this note we prove two theorems connecting the algebraic structure of Lie algebras of foliated vector fields with the smooth structure of a Riemannian foliation.
DOI : 10.4064/ap-58-2-111-122
Keywords: Riemannian foliation, Lie algebra, ideal, isomorphism, vector field, generalized manifold, stratification

Tomasz Rybicki 1

1
@article{10_4064_ap_58_2_111_122,
     author = {Tomasz Rybicki},
     title = {On {Lie} algebras of vector fields related to {Riemannian} foliations},
     journal = {Annales Polonici Mathematici},
     pages = {111--122},
     publisher = {mathdoc},
     volume = {58},
     number = {2},
     year = {1993},
     doi = {10.4064/ap-58-2-111-122},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-58-2-111-122/}
}
TY  - JOUR
AU  - Tomasz Rybicki
TI  - On Lie algebras of vector fields related to Riemannian foliations
JO  - Annales Polonici Mathematici
PY  - 1993
SP  - 111
EP  - 122
VL  - 58
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-58-2-111-122/
DO  - 10.4064/ap-58-2-111-122
LA  - en
ID  - 10_4064_ap_58_2_111_122
ER  - 
%0 Journal Article
%A Tomasz Rybicki
%T On Lie algebras of vector fields related to Riemannian foliations
%J Annales Polonici Mathematici
%D 1993
%P 111-122
%V 58
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-58-2-111-122/
%R 10.4064/ap-58-2-111-122
%G en
%F 10_4064_ap_58_2_111_122
Tomasz Rybicki. On Lie algebras of vector fields related to Riemannian foliations. Annales Polonici Mathematici, Tome 58 (1993) no. 2, pp. 111-122. doi : 10.4064/ap-58-2-111-122. http://geodesic.mathdoc.fr/articles/10.4064/ap-58-2-111-122/

Cité par Sources :