Some subclasses of close-to-convex functions
Annales Polonici Mathematici, Tome 58 (1993) no. 1, pp. 53-64
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For α ∈ [0,1] and β ∈ (-π/2,π/2) we introduce the classes $C_β(α)$ defined as follows: a function f regular in U = {z: |z| 1} of the form $f(z) = z + ∑_{n=1}^{∞} a_n z^n$, z ∈ U, belongs to the class $C_β(α)$ if $Re{e^{iβ}(1 - α²z²)f'(z)} 0$ for z ∈ U. Estimates of the coefficients, distortion theorems and other properties of functions in $C_β(α)$ are examined.
Keywords:
close-to-convex functions, close-to-convex functions with argument β, functions convex in the direction of the imaginary axis, functions of bounded rotation with argument β
Affiliations des auteurs :
Adam Lecko 1
@article{10_4064_ap_58_1_53_64,
author = {Adam Lecko},
title = {Some subclasses of close-to-convex functions},
journal = {Annales Polonici Mathematici},
pages = {53--64},
publisher = {mathdoc},
volume = {58},
number = {1},
year = {1993},
doi = {10.4064/ap-58-1-53-64},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-58-1-53-64/}
}
Adam Lecko. Some subclasses of close-to-convex functions. Annales Polonici Mathematici, Tome 58 (1993) no. 1, pp. 53-64. doi: 10.4064/ap-58-1-53-64
Cité par Sources :