Some subclasses of close-to-convex functions
Annales Polonici Mathematici, Tome 58 (1993) no. 1, pp. 53-64.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For α ∈ [0,1] and β ∈ (-π/2,π/2) we introduce the classes $C_β(α)$ defined as follows: a function f regular in U = {z: |z| 1} of the form $f(z) = z + ∑_{n=1}^{∞} a_n z^n$, z ∈ U, belongs to the class $C_β(α)$ if $Re{e^{iβ}(1 - α²z²)f'(z)} 0$ for z ∈ U. Estimates of the coefficients, distortion theorems and other properties of functions in $C_β(α)$ are examined.
DOI : 10.4064/ap-58-1-53-64
Keywords: close-to-convex functions, close-to-convex functions with argument β, functions convex in the direction of the imaginary axis, functions of bounded rotation with argument β

Adam Lecko 1

1
@article{10_4064_ap_58_1_53_64,
     author = {Adam Lecko},
     title = {Some subclasses of close-to-convex functions},
     journal = {Annales Polonici Mathematici},
     pages = {53--64},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {1993},
     doi = {10.4064/ap-58-1-53-64},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-58-1-53-64/}
}
TY  - JOUR
AU  - Adam Lecko
TI  - Some subclasses of close-to-convex functions
JO  - Annales Polonici Mathematici
PY  - 1993
SP  - 53
EP  - 64
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-58-1-53-64/
DO  - 10.4064/ap-58-1-53-64
LA  - en
ID  - 10_4064_ap_58_1_53_64
ER  - 
%0 Journal Article
%A Adam Lecko
%T Some subclasses of close-to-convex functions
%J Annales Polonici Mathematici
%D 1993
%P 53-64
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-58-1-53-64/
%R 10.4064/ap-58-1-53-64
%G en
%F 10_4064_ap_58_1_53_64
Adam Lecko. Some subclasses of close-to-convex functions. Annales Polonici Mathematici, Tome 58 (1993) no. 1, pp. 53-64. doi : 10.4064/ap-58-1-53-64. http://geodesic.mathdoc.fr/articles/10.4064/ap-58-1-53-64/

Cité par Sources :