A generalization of the Hahn-Banach theorem
Annales Polonici Mathematici, Tome 58 (1993) no. 1, pp. 47-51
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
If C is a non-empty convex subset of a real linear space E, p: E → ℝ is a sublinear function and f:C → ℝ is concave and such that f ≤ p on C, then there exists a linear function g:E → ℝ such that g ≤ p on E and f ≤ g on C. In this result of Hirano, Komiya and Takahashi we replace the sublinearity of p by convexity.
Keywords:
the Hahn-Banach theorem, convex functions
Affiliations des auteurs :
Jolanta Plewnia 1
@article{10_4064_ap_58_1_47_51,
author = {Jolanta Plewnia},
title = {A generalization of the {Hahn-Banach} theorem},
journal = {Annales Polonici Mathematici},
pages = {47--51},
publisher = {mathdoc},
volume = {58},
number = {1},
year = {1993},
doi = {10.4064/ap-58-1-47-51},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-58-1-47-51/}
}
Jolanta Plewnia. A generalization of the Hahn-Banach theorem. Annales Polonici Mathematici, Tome 58 (1993) no. 1, pp. 47-51. doi: 10.4064/ap-58-1-47-51
Cité par Sources :