A generalization of the Hahn-Banach theorem
Annales Polonici Mathematici, Tome 58 (1993) no. 1, pp. 47-51.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

If C is a non-empty convex subset of a real linear space E, p: E → ℝ is a sublinear function and f:C → ℝ is concave and such that f ≤ p on C, then there exists a linear function g:E → ℝ such that g ≤ p on E and f ≤ g on C. In this result of Hirano, Komiya and Takahashi we replace the sublinearity of p by convexity.
DOI : 10.4064/ap-58-1-47-51
Keywords: the Hahn-Banach theorem, convex functions

Jolanta Plewnia 1

1
@article{10_4064_ap_58_1_47_51,
     author = {Jolanta Plewnia},
     title = {A generalization of the {Hahn-Banach} theorem},
     journal = {Annales Polonici Mathematici},
     pages = {47--51},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {1993},
     doi = {10.4064/ap-58-1-47-51},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-58-1-47-51/}
}
TY  - JOUR
AU  - Jolanta Plewnia
TI  - A generalization of the Hahn-Banach theorem
JO  - Annales Polonici Mathematici
PY  - 1993
SP  - 47
EP  - 51
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap-58-1-47-51/
DO  - 10.4064/ap-58-1-47-51
LA  - en
ID  - 10_4064_ap_58_1_47_51
ER  - 
%0 Journal Article
%A Jolanta Plewnia
%T A generalization of the Hahn-Banach theorem
%J Annales Polonici Mathematici
%D 1993
%P 47-51
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap-58-1-47-51/
%R 10.4064/ap-58-1-47-51
%G en
%F 10_4064_ap_58_1_47_51
Jolanta Plewnia. A generalization of the Hahn-Banach theorem. Annales Polonici Mathematici, Tome 58 (1993) no. 1, pp. 47-51. doi : 10.4064/ap-58-1-47-51. http://geodesic.mathdoc.fr/articles/10.4064/ap-58-1-47-51/

Cité par Sources :