Strangely sweeping one-dimensional diffusion
Annales Polonici Mathematici, Tome 58 (1993) no. 1, pp. 37-45
Let X(t) be a diffusion process satisfying the stochastic differential equation dX(t) = a(X(t))dW(t) + b(X(t))dt. We analyse the asymptotic behaviour of p(t) = Prob{X(t) ≥ 0} as t → ∞ and construct an equation such that $lim sup_{t→∞} t^{-1} ∫_0^t p(s) ds = 1$ and $lim inf_{t→∞}t^{-1} ∫_0^t p(s) ds = 0$.
@article{10_4064_ap_58_1_37_45,
author = {Ryszard Rudnicki},
title = {Strangely sweeping one-dimensional diffusion},
journal = {Annales Polonici Mathematici},
pages = {37--45},
year = {1993},
volume = {58},
number = {1},
doi = {10.4064/ap-58-1-37-45},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-58-1-37-45/}
}
Ryszard Rudnicki. Strangely sweeping one-dimensional diffusion. Annales Polonici Mathematici, Tome 58 (1993) no. 1, pp. 37-45. doi: 10.4064/ap-58-1-37-45
Cité par Sources :