A generalization of the saddle point method with applications
Annales Polonici Mathematici, Tome 57 (1992) no. 3, pp. 269-281
We show that one can drop an important hypothesis of the saddle point theorem without affecting the result. We then show how this leads to stronger results in applications.
Keywords:
saddle point theorem, mountain pass theorem, Dirichlet problem, double resonance
@article{10_4064_ap_57_3_269_281,
author = {Martin Schechter},
title = {A generalization of the saddle point method with applications},
journal = {Annales Polonici Mathematici},
pages = {269--281},
year = {1992},
volume = {57},
number = {3},
doi = {10.4064/ap-57-3-269-281},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-57-3-269-281/}
}
TY - JOUR AU - Martin Schechter TI - A generalization of the saddle point method with applications JO - Annales Polonici Mathematici PY - 1992 SP - 269 EP - 281 VL - 57 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap-57-3-269-281/ DO - 10.4064/ap-57-3-269-281 LA - en ID - 10_4064_ap_57_3_269_281 ER -
Martin Schechter. A generalization of the saddle point method with applications. Annales Polonici Mathematici, Tome 57 (1992) no. 3, pp. 269-281. doi: 10.4064/ap-57-3-269-281
Cité par Sources :