p-Envelopes of non-locally convex F-spaces
Annales Polonici Mathematici, Tome 57 (1992) no. 2, pp. 121-134
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The p-envelope of an F-space is the p-convex analogue of the Fréchet envelope. We show that if an F-space is locally bounded (i.e., a quasi-Banach space) with separating dual, then the p-envelope coincides with the Banach envelope only if the space is already locally convex. By contrast, we give examples of F-spaces with are not locally bounded nor locally convex for which the p-envelope and the Fréchet envelope are the same.
Keywords:
p-envelope, non-locally convex F-space, multiplier
Affiliations des auteurs :
C. Eoff 1
@article{10_4064_ap_57_2_121_134,
author = {C. Eoff},
title = {p-Envelopes of non-locally convex {F-spaces}},
journal = {Annales Polonici Mathematici},
pages = {121--134},
year = {1992},
volume = {57},
number = {2},
doi = {10.4064/ap-57-2-121-134},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap-57-2-121-134/}
}
C. Eoff. p-Envelopes of non-locally convex F-spaces. Annales Polonici Mathematici, Tome 57 (1992) no. 2, pp. 121-134. doi: 10.4064/ap-57-2-121-134
Cité par Sources :